

1 Global deposition of speciated atmospheric mercury

2 to terrestrial surfaces: an overview

- 3 Lei Zhang^{1,2,*}, Peisheng Zhou¹, Shuzhen Cao¹, and Yu Zhao^{1,2}
- ⁴ School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing,
- 5 Jiangsu 210023, China
- ⁶ ² State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University,
- 7 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
- 8 Correspondence to: Lei Zhang (<u>lzhang12@nju.edu.cn</u>)
- 9

10 Abstract. One of the most important processes in the global mercury biogeochemical

11 cycling is the deposition of atmospheric mercury, including gaseous elemental

12 mercury (GEM), gaseous oxidized mercury (GOM), and particulate-bound mercury

13 (PBM), to terrestrial surfaces. In this paper, methods for the observation of wet, dry,

14 litterfall, throughfall, and cloud/fog deposition and models for mercury dry deposition

15 are reviewed. Surrogate surface methods with cation exchange membranes are widely

16 used for GOM dry deposition measurements, while observation methods for GEM dry

17 deposition are more diverse. The methodology for Hg wet deposition is more mature,

- 18 but the influence of cloud/fog scavenging is easy to neglect. Dry deposition models
- 19 for speciated mercury have high uncertainties owing to the presence of sensitive
- 20 parameters related to GOM chemical forms. Observation networks for mercury wet

21 deposition have been developed worldwide, with the Global Mercury Observation

22 System (GMOS) covering the northern hemisphere, the tropics, and the southern

- 23 hemisphere. Wet deposition implies the spatial distribution of atmospheric mercury
- 24 pollution, while GOM dry deposition depends highly on the elevation. Litterfall Hg
- 25 deposition is crucial to forests. Urban areas have high wet deposition and PBM dry
- 26 deposition because of high reactive mercury levels. Grasslands and forests have
- 27 significant GOM and GEM dry deposition, respectively. Evergreen broadleaf forests
- 28 bear high litterfall Hg deposition. Future research needs have been proposed based on
- 29 the current knowledge of global mercury deposition to terrestrial surfaces.
- 30

31 **1 Introduction**

22	Manuary (IIa) is a global mallutant, abarratarized by its non-netoxiaits, a secietar second
32	Mercury (Hg) is a global pollutant, characterized by its neurotoxicity, persistency and
33	bioaccumulation effect. It undergoes regional or global long-range transport via
34	atmospheric circulation, deposition to local or remote areas, methylation in
35	ecosystems, and accumulation through food chain, posing high risks to human health
36	and the environment (Obrist et al., 2018). Hg in the atmosphere has three major
37	forms: gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and
38	particulate-bound mercury (PBM). The sum of the three Hg forms is named total
39	mercury (TM). GOM and PBM are also known as reactive mercury (RM). GEM is the
40	predominant form of atmospheric Hg (>90%) with a long residence time of several
41	months to over one year due to its chemical inertness and low solubility. GOM
42	accounts for less than 1% of atmospheric Hg, which is easily scavenged by wet
43	deposition, resulting in a short residence time of hours to days. However, recent
44	studies (Lyman et al., 2010; Gustin et al., 2013; McClure et al., 2014; Gustin et al.,
45	2015) show that there could be a significant underestimation of GOM due to the low
46	capture efficiency of the KCl denuder method adopted by most observation sites in
47	the presence of ozone or moisture. PBM (<10% of atmospheric Hg) stays in the air for
48	tens of hours to several weeks depending on particle size before scavenged by dry or
49	wet deposition (Schroeder and Munthe, 1998; Lindberg et al., 2007; Ci et al., 2012;
50	Fu et al., 2012; Zhang et al., 2016a).
51	Deposition is one of the most important processes in global Hg cycling, leading to
52	the sink of atmospheric Hg (Obrist et al., 2018). Atmospheric Hg deposition can be
53	broadly divided into wet and dry deposition. Hg wet deposition is associated with
54	precipitation, cloud or fog, while Hg dry deposition is highly related to the underlying
55	surfaces, including forest canopies, grasslands, wetlands, agricultural fields, deserts,
56	background non-vegetated soils, contaminated sites, etc. (Zhang et al., 2009). Forest
57	canopy is regarded as an important sink of atmospheric Hg for its special forms of
58	deposition, litterfall and throughfall (Gustin et al., 2008). Litterfall is a form of
59	indirect Hg dry deposition through foliar uptake of atmospheric Hg, and throughfall
60	includes wet-deposited Hg above the canopy and a portion of dry-deposited Hg
61	washed off from the canopy (Wright et al., 2016). Hg deposition through litterfall has
62	recently been drawn much attention to by the study of Wang et al. (2016a). The sum
63	of litterfall and throughfall represents the total Hg deposition on the forest canopy.

- 64 Significant efforts have been made in the past decade for quantifying atmospheric
- 65 Hg deposition through both direct measurements and numerical models, especially on
- dry deposition (Lyman et al., 2009; Zhang et al., 2009; Holmes et al., 2011; Lai et al.,
- 67 2011; Castro et al., 2012; Gustin et al., 2012; Peterson et al., 2012; Zhang et al., 2012;
- 68 Fang et al., 2013; Sather et al., 2013; Lyman et al., 2014; Sather et al., 2014; Huang
- and Gustin, 2015a; Weiss-Penzias et al., 2016; Zhang et al., 2016b; Hall et al., 2017;
- 70 Sprovieri et al., 2017). Yet large uncertainties still exist due to limitations of current
- 71 methods for Hg deposition measurements and models (Gustin et al., 2015). The
- 72 purpose of this paper is to give an overview of current understanding on the global
- 73 deposition of speciated atmospheric Hg to terrestrial surfaces. In this paper, we
- reviewed methods adopted for Hg deposition measurements and modeling, results of
- 75 Hg deposition observations from all over the world, and a summary of speciated
- 76 atmospheric Hg deposition on different underlying surfaces.
- 77 2 Methods for Hg deposition measurements

78 2.1 Methods for Hg dry deposition

- 79 Three major categories of methods for direct Hg dry deposition measurements are the
- surrogate surface methods, the enclosure methods, and the micrometeorological
- 81 methods (Zhang et al., 2009; Huang et al., 2014). Hg dry deposition can also be
- 82 calculated based on Hg concentration measurements (Zhang et al., 2009; Wright and
- 83 Zhang, 2015), which will be reviewed in Section 3.
- 84 2.1.1 Surrogate surface methods
- 85 Passive samplers are deployed in the surrogate surface methods to quantify the dry
- deposition flux of GEM, GOM and PBM (Huang et al., 2014; Wright et al., 2016).
- 87 The Hg dry deposition flux is determined using the following equation:

88
$$F_{\rm dry,SS} = \frac{M}{A \cdot t} \tag{1}$$

- where $F_{dry,SS}$ is the Hg dry deposition flux using the surrogate surface methods, Mis the total Hg amount collected on the material during the sampling period, A is the surface area of the collection material, and t is the exposure time.
- 92 Filter-based surfaces are widely used in passive samplers for Hg dry deposition flux
- 93 measurements, with cation-exchange membrane (CEM) for GOM dry deposition
- 94 (Lyman et al., 2007; Lyman et al., 2009; Castro et al., 2012; Huang et al., 2012;
- 95 Peterson et al., 2012; Sather et al., 2012) and with gold-coated quartz fiber filter

96	(GcQFF) for TM dry deposition (Lai et al., 2011; Huang et al., 2012). The CEM
97	method is believed to capture part of fine PBM as well (Huang et al., 2014). The CEM
98	mounts for GOM dry deposition flux measurements are increasingly designed into
99	aerodynamic shapes to minimize the impact of turbulence (Lyman et al., 2009).
100	Water- or solution-based surfaces, e.g., static water surrogate surface (SWSS), collect
101	GOM and PBM (Sakata and Marumoto, 2004; Marsik et al., 2007; Lai et al., 2011).
102	GEM is not water soluble and hence unable to be captured by SWSS. Acidified
103	solution captures part of GEM and has a higher measurement of Hg dry deposition
104	than deionized (DI) water because in acidified solution GEM is oxidized to GOM
105	which stabilizes the deposited Hg and decreases mass transfer resistance (Lai et al.,
106	2011). SWSS was considered to measure TM dry deposition over ten years ago since
107	RM (GOM and PBM) dry deposition was regarded as the dominance of TM dry
108	deposition. In the recent decade, more and more studies found that GEM dry
109	deposition accounts for a large proportion of TM dry deposition over grassland
110	(Fritsche et al., 2008; Castro and Moore, 2016; Obrist et al., 2017). A newly
111	developed artificial turf surrogate surface (ATSS) method has shown promising
112	performance in measuring TM dry deposition and allows the interference of
113	precipitation (Lynam et al., 2014; Hall et al., 2017). When Hg wet deposition is
114	monitored simultaneously, the Hg dry deposition flux can be calculated as follows:
115	$F_{\text{turg}} = \frac{(M_{\text{turf}} + M_{\text{throughfall}}) - M_{\text{wet}}}{(2)}$

115
$$F_{\rm dry,ATSS} = \frac{(M_{\rm turf} + M_{\rm throughfall}) - M_{\rm wet}}{A \cdot t}$$
(2)

where $F_{dry,ATSS}$ is the TM dry deposition flux estimated from the ATSS method, and M_{turf} , $M_{throughfall}$ and M_{wet} are the Hg amounts in turf, throughfall and wet deposition, respectively.

Although surrogate surface methods have limitation in temporal resolution, they are
still widely used in recent years due to their low costs, high accuracy and applicability
to different Hg forms.

122 2.1.2 Enclosure methods

123 Enclosure methods rely on the conservation of mass and have been used for most

124 GEM flux measurements due to their relatively low costs, portability, versatility and

intuitive nature (Eckley et al., 2011; Sommar et al., 2013a; Sommar et al., 2013b;

Agnan et al., 2016; Zhu et al., 2016; Ma et al., 2018). The dynamic flux chamber

127 (DFC) method is the most commonly used enclosure method. A vacuum pump is

applied to draw air through a low Hg blank chamber at a constant flow, and the GEM 128 129 concentrations at the inlet and outlet of the chamber are measured sequentially by a mercury analyzer coupled with a switchable valve. The GEM dry deposition flux is 130 131 calculated according to the following equation: $F_{\rm dry,DFC} = \frac{Q(C_{\rm inlet} - C_{\rm outlet})}{A}$ 132 (3)where $F_{dry,DFC}$ is the GEM dry deposition flux measured by the DFC method, Q is 133 the flushing flow rate, Cinlet and Coutlet are the GEM concentrations at the chamber 134 inlet and outlet, respectively, and A is the area of the chamber footprint. 135 136 Different flushing flow rates, chamber designs and materials, as well as the lack of standard operating protocol and blank correcting procedures, make it hard for 137 comparison between different studies (Eckley et al., 2010; Agnan et al., 2016; 138 Osterwalder et al., 2018). A novel aero-DFC was designed and utilized in recent 139 studies (Lin et al., 2012; Zhu et al., 2015a; Zhu et al., 2015b; Osterwalder et al., 140 141 2018). The GEM dry deposition flux under atmospheric condition can be calculated based on the flux measured by the aero-DFC with the internal shear property precisely 142 143 controlled and the surface shear property (Lin et al., 2012). Enclosure methods have high temporal and spatial resolution, and are thus widely 144 adopted for GEM dry deposition flux measurements. However, they are not applicable 145 to RM dry deposition measurements. 146 147 2.1.3 Micrometeorological methods 148 Micrometeorological methods can be mainly divided into the direct flux measurement methods and the gradient methods. The most known one of the former is the relaxed 149 eddy accumulation (REA) method, while the latter include the aerodynamic (AER) 150 method and the modified Bowen-ratio (MBR) method (Zhang et al., 2009; Yu et al., 151 2018). 152 153 The REA method is based on sampling upward and downward moving eddies at constant flow rates, which relies on an ultrasonic anemometer to detect the vertical 154 wind velocity and control the fast response valves. The GEM dry deposition flux 155 based on the REA method is calculated as follows: 156 157 $F_{\rm dry,REA} = \beta \sigma_w (C_{\rm down} - C_{\rm up})$ (4)158 where $F_{dry,REA}$ is the GEM dry deposition flux measured by the REA method, β is 159 relaxation coefficient, σ_w is the standard deviation of the vertical wind speed, and

- 160 C_{down} and C_{up} are the downward and upward GEM concentration, respectively.
- 161 The REA method conducts upward and downward sampling at the same height,
- eliminating the footprint difference and potential GEM formation and loss (Zhu et al.,
- 163 2016). Dual inlets were recommended and applied in recent studies due to advantages
- 164 of synchronous concentration determination (Sommar et al., 2013b; Zhu et al., 2015b;
- 165 Kamp et al., 2018; Osterwalder et al., 2018).
- 166 The gradient methods (AER and MBR) sample air at different height to get the
- 167 vertical GEM concentration gradient. For the AER method, the GEM dry deposition
- 168 flux is calculated using the following equation (Fritsche et al., 2008; Baya and Van
- 169 Heyst, 2010; Yu et al., 2018):

170
$$F_{\rm dry,AER} = K \frac{\partial C}{\partial z}$$
(5)

- 171 where $F_{dry,AER}$ is the GEM dry deposition flux measured by the AER method, *K* is 172 the turbulent transfer coefficient (Yu et al., 2018), and $\partial C/\partial z$ is the gradient of the 173 vertical GEM concentration. 174 For the MBR method, the GEM dry deposition flux is calculated based on the
- theory that the ratio of GEM and the reference scalar (e.g., H₂O) fluxes is proportional
 to their concentration gradients (Obrist et al., 2006; Converse et al., 2010; Zhu et al.,
 2015a):

178
$$F_{\rm dry,MBR} = F_r \frac{\partial C_{\rm Hg}}{\partial C_r}$$
(6)

where $F_{dry,MBR}$ is the GEM dry deposition flux measured by the MBR method, F_r is the flux of the reference scalar, and $\partial C_{Hg}/\partial C_r$ is the concentration gradient ratio of

181 GEM over the reference scalar.

Micrometeorological methods are relatively reliable with high temporal resolution
and represent the ecosystem scale due to less interference from the microenvironment
(Zhu et al., 2016). The direct flux measurement methods generally have more

- complex installment and high expenses than the gradient methods, but could reduce
- uncertainties due to the elimination of the sampling height difference (Sommar et al.,
- 187 2013b; Pierce et al., 2015).

188 2.2 Methods for Hg wet deposition

- 189 Hg wet deposition through precipitation is easier to measure than dry deposition and
- 190 usually more reliable. The Hg wet deposition flux is calculated as follows:

191	$F_{\text{wet}} = \sum_{i=1}^{n} C_i \cdot D_i \tag{7}$
192	where F_{wet} is the total Hg wet deposition flux, n is the number of precipitation
193	events during a certain period, C_i is the total Hg concentration in precipitation water
194	during Event i , and D_i is the precipitation depth of Event i .
195	Both manual and automatic precipitation sample collectors were used in previous
196	studies (Fu et al., 2010a; Gratz and Keeler, 2011; Marumoto and Matsuyama, 2014;
197	Zhu et al., 2014; Brunke et al., 2016; Chen et al., 2018). Automatic precipitation
198	sample collectors cover the lid automatically when it is not raining to prevent
199	potential contamination, while manual collectors require manually placing collectors
200	before precipitation events and retrieving them after events. All collector sections
201	exposed to rainwater should be made by teflon or borosilicate glass due to potential
202	Hg adsorption (Fu et al., 2016). The collected samples need to be acidified and then
203	preserved in a cool and dark environment before analysis. The total Hg concentration
204	in precipitation water is analyzed by oxidation, purge and trap, and cold vapor atomic
205	fluorescence spectrometry (CVAFS) following EPA Method 1631E. GOM and PBM
206	are the main Hg forms removed by precipitation due to high solubility. Usually, GOM
207	and PBM contribute equivalently to Hg wet deposition (Cheng et al., 2015).
208	2.3 Methods for Hg deposition in forests
209	In forest ecosystems, Hg dry and wet depositions are not able to be distinguished
210	markedly. Litterfall and throughfall are commonly used to evaluate the Hg deposition
211	in forests (Wang et al., 2016b; Wright et al., 2016). Cloud and fog are also important
212	forms of Hg deposition in forest regions, especially at high-elevation sites (Blackwell
213	and Driscoll, 2015).

214 2.3.1 Litterfall

Hg dry deposition in forests includes uptake of Hg by leaf stomata and cuticle, tree bark, and underlying soil. Some of the deposited Hg in the soil may emit back into the atmosphere and be captured by leaves, while some of the deposited Hg in leaves may be translocated to branches, stems and roots. Litterfall Hg deposition includes the remaining dry-deposited Hg in leaves and bark as well as the captured Hg emitted from the soil (Blackwell and Driscoll, 2015; Wright et al., 2016). Litterfall Hg deposition flux is calculated as follows:

222
$$F_{imerfal} = \frac{E_A \cdot C_I \cdot M_I}{A \cdot t}$$
 (8)223where $F_{iturefall}$ is the litterfall Hg deposition flux, E_A is the litterfall trap area224expansion factor, C_I is the Hg mass concentration in litterfall, M_I is the total dry225weight of litterfall, A is the litterfall trap area, and t is the sampling time (Fisher and226Wolfe, 2012).227Litterfall is collected during the leaf-growing or -falling seasons with litterfall traps228or collectors (Fisher and Wolfe, 2012). It should be noted that the Hg concentration in229leaves has an approximately linear correlation with time during the growing season230(Bushey et al., 2008; Fu et al., 2010a; Gong et al., 2014). Litterfall is collected on a231regular basis to prevent potential weight loss and changes in chemical composition232caused by rain leaching and decomposition. The litterfall samples collected are then233air-dried, ground and stored under a low temperature and dark environment for234analysis (Zhou et al., 2017). The Hg content in litterfall can be determined by thermal235decomposition, amalgamation, and cold vapor atomic absorption spectrophotometry236(CVAAS) following EPA Method 7473 (Richardson and Friedland, 2015; Fu et al.,2372016; Zhou et al., 2017; Risch et al., 2017). Alternatively, the litterfall samples can be238digested into solution, and the extracted Hg in the solution can be analyzed following239EPA Method 1631E (Fu et al., 2010a; Fisher and Wolfe, 2012).2402.3.2 Throughfall241Throughfall Hg deposition incl

Throughfall under canopy is usually collected using a passive bulk throughfall
collector with a funnel connected a bottle for water storage (Wang et al., 2009; Fisher
and Wolfe, 2012; Åkerblom et al., 2015) or collected as open-field rain collection if
the environmental condition permits (Choi et al., 2008; Fu et al., 2010a; Fu et al.,
2010b; Han et al., 2016). Attention should be paid to potential litterfall contamination

- and cloud/fog deposition influence at high elevation sites if the collector is not
- sheathed (Fisher and Wolfe, 2012; Wright et al., 2016). Throughfall samples are
- usually analyzed following EPA Method 1631E (Fisher and Wolfe, 2012).
- 257 2.3.3 Cloud/fog
- 258 At high elevation sites, besides litterfall and throughfall deposition, cloud/fog Hg
- 259 deposition could account for a large proportion of the total deposition (Lawson et al.,
- 260 2003; Sheu and Lin, 2011; Stankwitz et al., 2012; Blackwell and Driscoll, 2015).
- 261 Quantifying Hg in cloud/fog at high elevation helps better understand the impact of
- long-range transport and local sources on global Hg cycling (Malcolm et al., 2003).
- 263 Both active and passive collectors are used to collect cloud/fog. The passive collector
- has two round disks with teflon wires strung in between. Cloud/fog water collides
- onto the teflon wires and slides down to a sampling bottle (Lawson et al., 2003;
- 266 Malcolm et al., 2003; Sheu and Lin, 2011; Schwab et al., 2016). Active cloud/fog
- 267 water samplers use a fan to blow cloud/fog to teflon strings which are used to gather
- cloud/fog droplets (Kim et al., 2006; Weiss-Penzias et al., 2018). The collected
- cloud/fog water samples are usually analyzed using EPA Method 1631E (Blackwell

and Driscoll, 2015). Cloud/fog Hg deposition flux is calculated as follows:

$$F_{\text{cloud/fog}} = F_d \cdot C_{\text{Hg}} \tag{10}$$

- where $F_{\text{cloud/fog}}$ is the cloud/fog Hg deposition flux, F_d is the deposition flux of
- cloud/fog, and C_{Hg} is the Hg concentration in cloud/fog. F_d can be estimated using

resistance models, analytical models or sophisticated atmosphere-soil-vegetation

275 models (Katata, 2014).

276 **3 Models for Hg dry deposition**

Dry deposition fluxes of speciated Hg can also be estimated by coupling speciated Hg
concentrations and dry deposition models (Wright et al., 2016). Here we summarize
dry deposition models for different Hg forms.

280 3.1 Resistance model for GOM

It is assumed that GOM dry deposition flux is proportional to the GOM concentration (Seinfeld and Pandis, 2016):

$$F_{\rm dry,GOM} = v_d \cdot C_z \tag{11}$$

where $F_{dry,GOM}$ is the GOM dry deposition flux, C_z is the GOM concentration at

reference height z, and v_d is the dry deposition velocity which can be calculated using

the following equation:

287
$$v_d = \frac{1}{R_a + R_b + R_c}$$
 (12)

where R_a is the aerodynamic resistance depending on the meteorological conditions and the land use category, R_b is the quasi-laminar resistance, a function of friction velocity and the molecular diffusivity of each chemical species (Zhang et al., 2002), and R_c is the canopy resistance which can be further parameterized as follows:

292
$$R_{c} = \left(\frac{1 - W_{st}}{R_{st} + R_{m}} + \frac{1}{R_{ns}}\right)^{-1}$$
(13)

where W_{st} is the fraction of stomatal blocking under wet conditions, R_{st} is the stomatal resistance, R_m is the mesophyll resistance, and R_{ns} is the non-stomatal resistance which is comprised of in-canopy, soil, and cuticle resistances. Cuticle and soil resistances for GOM can be scaled to those of SO₂ and O₃ using the following equation:

298
$$R_{x,\text{GOM}} = \left(\frac{\alpha_{\text{GOM}}}{R_{x,\text{SO}_2}} + \frac{\beta_{\text{GOM}}}{R_{x,\text{O}_3}}\right)^{-1}$$
(14)

where R_x is the cuticle or soil resistance, α and β are two scaling parameters (Zhang 299 300 et al., 2003; Zhang et al., 2012). Among the numerous parameters in the resistance model the two scaling factors for the non-stomatal resistance components regarding 301 the solubility and reactivity of the chemical species are the most sensitive ones. The 302 values for HNO₃ ($\alpha = \beta = 10$) used to be applied in the model for GOM (Marsik et al., 303 304 2007; Castro et al., 2012; Zhang et al., 2012). However, some other studies found the values for HONO ($\alpha = \beta = 2$) are probably more suitable for GOM due to equivalent 305 306 effective Henry's Law constants (H^*) between HONO and HgCl₂ (Lyman et al., 2007). Huang and Gustin (2015) indicated that no single value could be used to 307 308 calculate GOM dry deposition due to the unknown GOM compounds. Various values for the two scaling parameters ($\alpha = \beta = 2, 5, 7$ and 10) were used in Huang et al. (2017) 309 to identify dominant GOM deposition species. 310

311 **3.2 Resistance model for PBM**

312 For PBM dry deposition, a size-segregated resistance model is more and more widely

- applied, based on the theory that v_d for atmospheric particles strongly depend on
- particle size distributions (Dastoor and Larocque, 2004; Zhang et al., 2009; Zhang and
- He, 2014). Many independent studies (Fang et al., 2012; Zhu et al., 2014) showed that

- Hg in coarse particles constitutes a large mass fraction of the total PBM, which was previously neglected. PBM measured by Tekran 2537/1130/1135 only considers fine particles. Based on available measurements of PBM size distributions and fine/coarse PBM mass ratios, Zhang et al. (2016b) assumed 30% of the total PBM mass to be coarse particles in order to estimate total PBM dry deposition flux based on the theory that PBM has the same proportion in both fine and course particles.
- 322 The total PBM dry deposition can be calculated as follows:

323
$$F_{\rm dry,PBM} = C_f \left(v_f + \frac{f}{1 - f} v_c \right)$$
(15)

where $F_{dry,PBM}$ is the total PBM dry deposition flux, C_f is the mass concentration of PBM in fine particles, v_f and v_c are the dry deposition velocities of PBM for fine and coarse particles, respectively, and *f* is the mass fraction of PBM in coarse particles. v_f and v_c can be calculated using the following equation:

328
$$v_x = v_g + \frac{1}{R_a + R_s}$$
 (16)

where v_x is v_f or v_c , v_g is the gravitational settling velocity, R_a is the aerodynamic resistance, and R_s is the surface resistance which can be parameterized as a function of collection efficiencies from Brownian diffusion, impaction, and interception mechanisms (Zhang et al., 2012; Zhang et al., 2016b). Zhang and He (2014) have developed an easier bulk algorithm based on the v_x scheme of Zhang et al. (2001) to make this model more widely applicable in monitoring networks.

335 3.3 Bidirectional air-surface exchange model for GEM

GEM dry deposition can also be calculated using the resistance model with different
parameters. However, the re-emission and natural emission of GEM must be taken
into consideration. Net GEM dry deposition is estimated from the difference between
the estimated unidirectional deposition flux and the modeled total re-emission plus
natural emission in the resistance model (Zhang et al., 2012).

A bidirectional air-surface exchange model modified from the resistance model is more and more recommended in recent years (Zhang et al., 2009; Bash, 2010; Wang et al., 2014; Zhang et al., 2016b; Zhu et al., 2016). In the bidirectional scheme, the GEM dry deposition flux can be calculated as follows:

$$F_{\rm dry,GEM} = \frac{\chi_a - \chi_c}{R_a + R_b}$$
(17)

346 $\chi_{c} = \left(\frac{\chi_{a}}{R_{a} + R_{b}} + \frac{\chi_{st}}{R_{st} + R_{m}} + \frac{\chi_{g}}{R_{ac} + R_{g}}\right) \left(\frac{1}{R_{a} + R_{b}} + \frac{1}{R_{st} + R_{m}} + \frac{1}{R_{ac} + R_{g}} + \frac{1}{R_{cut}}\right)^{-1} (18)$

where $F_{dry,GEM}$ is the net GEM dry deposition flux; χ_a is the GEM concentration at a reference height; R_a , R_b , R_{st} , R_m , R_{ac} , R_g and R_{cut} are aerodynamic, quasi-laminar, stomatal, mesophyll, in-canopy aerodynamic, ground surface and cuticle resistances, respectively (Zhang et al., 2016b); and χ_{st} and χ_g are canopy, stomatal and ground

351 surface compensation points, respectively. Based on observations on different land use

categories, Wright and Zhang (2015) have proposed a range of χ_{st} and χ_g .

353 4 Global observation network of Hg deposition

354 There have been several observation networks of Hg wet deposition. The Global

355 Mercury Observation System (GMOS) is so far the only global scale network

356 covering the northern hemisphere, the tropics, and the southern hemisphere (Sprovieri

et al., 2017). The Mercury Deposition Network (MDN) of the National Atmospheric

358 Deposition Program (NADP) in North America is the earliest continental scale

network specifically for Hg deposition (Prestbo and Gay, 2009; Weiss-Penzias et al.,

360 2016). Hg wet deposition is also monitored in the European Monitoring and

361 Evaluation Programme (EMEP) for Europe (Tørseth et al., 2012; Bieser et al., 2014).

362 A new Asia–Pacific Mercury Monitoring Network has recently been established

363 (Obrist et al., 2018). Since the methods of measurements still have high uncertainties,

there is not yet any tangible monitoring network for Hg dry deposition.

365 4.1 Wet deposition

Sprovieri et al. (2017) reported a 5-year record (2011–2015) of Hg wet deposition at 366 367 17 selected GMOS monitoring sites, which provided a global baseline of the Hg wet deposition flux including regions in the southern hemisphere and tropical areas where 368 369 Hg wet deposition had never been investigated before. The average Hg wet deposition fluxes in the northern hemisphere, the tropics, and the southern hemisphere were 2.9 370 (0.2-6.7), 4.7 (2.4-7.0), and 1.9 (0.3-3.3) µg m⁻² yr⁻¹, respectively. Precipitation 371 volume was found to be the key factor for the inter-annual differences in total Hg wet 372 373 deposition. The MDN network has a much longer history which dates back to the 374 1990s. Weiss-Penzias et al. (2016) analyzed records from 19 sites in the United States (U.S.) and Canada between 1997 and 2013, and discovered trends of Hg concentration 375 in wet deposition, with the early time period (1998–2007) producing a significantly 376

377	negative trend (-1.5 \pm 0.2% yr ⁻¹) and the late time period (2008–2013) a flat slope (not
378	significant). Therefore, the MDN data of 136 sites (http://nadp.slh.wisc.edu/mdn) for
379	the time period of 2008–2015 was summarized in this study to represent the recent
380	background Hg wet deposition level in North America. Fu et al. (2016) summarized
381	wet deposition measurements from 7 monitoring sites in China. Hg wet deposition
382	fluxes at rural sites in forest and grassland were averagely 6.2 and 2.0 $\mu g \ m^{-2} \ yr^{-1},$
383	respectively, while the flux at an urban site was as high as 12.6±6.5 $\mu g~m^{-2}~yr^{-1}.$
384	Figure 1 summarizes the global distribution of Hg wet deposition based on existing
385	studies. Hg wet deposition flux is not significantly related to elevation. Overall, East
386	Asia has the highest wet deposition flux (averagely 16.1 μ g m ⁻² yr ⁻¹), especially in the
387	southern part of China where the GEM concentration level is relatively high (Fu et al.,
388	2008; Guo et al., 2008; Wang et al., 2009; Fu et al., 2010; Ahn et al., 2011; Huang et
389	al., 2012; Seo et al., 2012; Huang et al., 2013; Sheu and Lin, 2013; Marumoto and
390	Matsuyama, 2014; Xu et al., 2014; Zhu et al., 2014; Huang et al., 2015; Zhao et al.,
391	2015; Han et al., 2016; Fu et al., 2016; Ma et al., 2016; Nguyen et al., 2016; Qin et al.,
392	2016; Sommar et at., 2016; Cheng et al., 2017; Chen et al., 2018; Lu and Liu, 2018).
393	North America has the most complete deposition observation network with an average
394	Hg wet deposition flux of 9.1 μ g m ⁻² yr ⁻¹ , and exhibits a decreasing spatial profile
395	from the southeastern part to the northwestern part, which is consistent with the
396	distribution of the atmospheric Hg concentration (Zhang et al., 2012; Gichuki and
397	Mason, 2014; Lynam et al., 2017). Europe has the lowest Hg wet deposition flux
398	(averagely 3.4 $\mu g~m^{-2}~yr^{-1})$ according to the available dataset (Connan et al., 2013;
399	Bieser et al., 2014; Siudek et al., 2016). Observation sites in the tropics and the
400	southern hemisphere are scarce with large variation in Hg wet deposition flux
401	(Wetang'ula, 2011; Gichuki and Manson, 2013; Sprovieri et al., 2017). Precipitation
402	could be the main cause of the differences.
403	The relationship between the annual precipitation and the Hg wet deposition flux is
404	shown in Fig. 2. The wet deposition flux is basically positively related to the annual
405	precipitation, except for 8 sites in southwestern China which are close to former Hg
406	mining area and 3 urban or suburban sites in southeastern China. These 11 sites have
407	an average Hg wet deposition flux of 34.5 $\mu g \; m^{-2} \; yr^{-1}.$ The one exceptional tropical
408	site with a wet deposition flux of 16.8 $\mu g \ m^{-2} \ yr^{-1}$ is in Kenya while the other sites in
409	the tropics are all in Mexico (Wetang'ula, 2011; Hansen and Gay, 2013). The two sites

- 410 in the southern hemisphere with annual precipitation of over 4000 mm are in Australia
- and have wet deposition fluxes of 29.1 and 18.2 μ g m⁻² yr⁻¹, respectively (Dutt et al.,
- 412 2009). The slope of the relationship implies the Hg concentration in precipitation.
- 413 Europe has the flattest slope among all regions, indicating its lowest Hg pollution
- 414 level around the world.

415 4.2 Dry deposition

The Hg dry deposition network is immature compared to the wet deposition network 416 due to the inconsistency in methods of measurements. GOM dry deposition fluxes 417 were either measured by the surrogate surface method using CEMs or estimated from 418 measurements of GOM concentrations. PBM dry deposition fluxes were mainly 419 420 estimated from the measurements of total or size-resolved PBM concentrations. GEM dry deposition fluxes were measured by different types of methods, the surrogate 421 surface methods, the enclosure methods, and the micrometeorological methods. 422 Figure 3 shows the global distribution of the GOM, PBM and GEM dry deposition 423 fluxes. Although large uncertainties still exist in the methods for Hg dry deposition 424 measurements, it should be noted that GEM dry deposition is non-negligible 425 compared to GOM and PBM. 426 The data of GOM dry deposition fluxes concentrate in North America and Europe, 427 428 among which direct observations of GOM dry deposition are mainly from North America (Lyman et al., 2007; Lyman et al., 2009; Weiss-Penzias et al., 2011; Lombard 429 et al., 2011; Castro et al., 2012; Gustin et al., 2012; Peterson et al., 2012; Zhang et al., 430 2012; Sather et al., 2013; Bieser et al., 2014; Huang et al., 2014; Sather et al., 2014; 431 432 Wright et al., 2014; Huang and Guatin, 2015; Enrico et al., 2016; Han et al., 2016; Zhang et al., 2016; Huang et al., 2017). Regardless of the evaluating methods, the 433 mean GOM dry deposition flux in North America (6.4 μ g m⁻² yr⁻¹) is higher than in 434 Europe (3.0 μ g m⁻² yr⁻¹). Han et al. (2016) used knife-edge surrogate surface (KSS) 435 samplers with quartz filters to measure GOM dry deposition at a remote site in Korea, 436 and found an average GOM dry deposition flux of 4.78 μ g m⁻² yr⁻¹. Huang et al. 437 (2012a) used KSS samplers with CEMs in several polluted areas and got a much 438 higher average (52.9 μ g m⁻² yr⁻¹). A significant correlation (R²=0.532, p<0.01) was 439 found between the elevation and the GOM dry deposition flux (Fig. 4). Huang and 440 Gustin (2014) found that measured dry deposition of GOM was significantly high at 441 sites over 2000 m above sea level, and attributed it to high GOM concentrations at 442

443 high elevation and atmospheric turbulence.

444	Due to the severe particulate matter (PM) pollution in East Asia, many independent
445	size-resolved PM measurements were conducted in recent years with analysis of Hg
446	in PM accordingly. Results from size-resolved PBM analysis and PBM dry deposition
447	models show that East Asia has a much higher average of PBM dry deposition flux
448	(45.3 $\mu g~m^{-2}~yr^{-1})$ than North America (1.1 $\mu g~m^{-2}~yr^{-1})$ with coarse-particle PBM dry
449	deposition not considered (Fang et al., 2012a; Fang et al., 2012b; Zhu et al., 2014;
450	Zhang et al., 2015; Huang et al., 2016; Guo et al., 2017).
451	The mean GEM dry deposition is lower in Europe (4.3 \pm 8.1 µg m ⁻² yr ⁻¹) while
452	higher and more variable in North America (5.2 \pm 15.5 µg m ⁻² yr ⁻¹) (Castelle et al.,
453	2009; Baya and Heyst, 2010; Converse et al., 2010; Miller et al., 2011). The four
454	Asian sites using micrometeorological methods all show negative values (-36.3 ± 19.6
455	μg m ⁻² yr ⁻¹) (Luo et al., 2015; Luo et al., 2016; Ci et al., 2016; Sommar et al., 2016),
456	indicating natural GEM emission sources rather than GEM deposition sinks, but the
457	GEM dry deposition data in Asia is very limited. No GEM, GOM or PBM dry
458	deposition data were found for the tropics or the southern hemisphere.
459	Large uncertainties still exist in the evaluating methods. Significant discrepancies
460	were found between observed and simulated GOM dry deposition fluxes (Fig. 5).
461	Some recent studies used a scaling factor of 3 to adjust GOM concentrations (Huang
462	and Gustin, 2014; Huang et al., 2017), trying to offset the underestimation due to the
463	low capture efficiency of the widely adopted KCl denuder method for measurements
464	of GOM concentrations (Huang and Gustin, 2015).
465	4.3 Forest deposition
466	Hg deposition in forests is mainly in the form of litterfall and throughfall. Wang et al.
467	(2016) made a comprehensive assessment of the global Hg deposition through
468	litterfall, and found litterfall Hg deposition an important input to terrestrial forest
469	ecosystems (1180 \pm 710 Mg yr ⁻¹). South America was estimated to bear the highest
470	litterfall Hg deposition (65.8±57.5 $\mu g~m^{-2}~yr^{-1})$ around the world. This was partially
471	because some studies were conducted in the Amazonian rainforest (Fostier et al.,
472	2015), mainly semi-deciduous or evergreen tropical forest, which account for over
473	40% litterfall deposition globally (Shen et al., 2019). Another reason was that some
474	sampling sites were very close to large cities or polluted areas, which could lead to
475	more Hg accumulation (Teixeira et al., 2012; Buch et al., 2015; Teixeira et al., 2017;

476	Fragoso et al., 2018). There have been numerous forest Hg deposition studies in the
477	recent decade in East Asia with the second highest average litterfall Hg deposition
478	flux (35.5±27.7 $\mu g~m^{-2}~yr^{-1}).$ The forest type varies among different studies, but East
479	Asia has much higher Hg concentrations in litterfall (42.9–62.8 ng/g) compared to
480	other regions (Wan et al., 2009; Wang et al., 2009; Fu et al., 2010a; Fu et al., 2010b;
481	Gong et al., 2014; Luo et al., 2015; Ma et al., 2015; Han et al., 2016; Fu et al., 2016;
482	Ma et al., 2016; Wang et al., 2016; Zhou et al., 2016; Zhou et al., 2017). Lower levels
483	of litterfall Hg deposition fluxes were found in North America (12.3±4.9 $\mu g~m^{-2}~yr^{-1})$
484	and Europe (14.4 \pm 5.8 µg m ⁻² yr ⁻¹) (Larssen et al., 2008; Obrist et al., 2009; Fisher and
485	Wolfe, 2012; Juillerat et al., 2012; Obrist et al., 2012; Benoit et al., 2013; Navrátil et
486	al., 2014; Gerson et al., 2017; Risch et al., 2017; Risch and Kenski, 2018). According
487	to Risch et al. (2017), the litterfall Hg deposition flux in the eastern U.S. decreased
488	year by year during 2007–2014 with a decline rate of 0.8 μ g m ⁻² yr ⁻¹ . From 2007 to
489	2009 the decrease occurred more rapidly due to the Hg emission control strategies
490	during this period of time.
491	Most studies on Hg deposition in forests in North America use rainfall instead of
492	throughfall since dry deposition in North American forests has limited contribution
493	(Risch et al., 2017), while Asian studies found large discrepancy between throughfall
494	and rainfall Hg deposition fluxes (32.9 \pm 18.9 and 13.3 \pm 8.6 µg m ⁻² yr ⁻¹ , respectively),
495	indicating a high dry deposition level in Asian forests (Wan et al., 2009; Wang et al.,
496	2009; Fu et al., 2010a; Fu et al., 2010b; Luo et al., 2015; Ma et al., 2015; Han et al.,
497	2016; Fu et al., 2016; Ma et al., 2016; Wang et al., 2016; Zhou et al., 2016). Litterfall
498	and throughfall Hg deposition fluxes are equivalent. Wright et al. (2016) summarized
499	previous studies and reported the mean litterfall and throughfall Hg deposition,
500	respectively, 42.8 and 43.5 $\mu g~m^{-2}~yr^{-1}$ in Asia, 14.2 and 19.0 $\mu g~m^{-2}~yr^{-1}$ in Europe,
501	and 12.9 and 9.3 μ g m ⁻² yr ⁻¹ in North America.
502	Studies of cloud/fog Hg deposition are very limited so far. Stankwitz et al. (2012)
503	and Gerson et al. (2017) found the average cloud/fog Hg deposition fluxes of two
504	North American forests to be 7.4 and 4.3 $\mu g~m^{-2}~yr^{-1},$ respectively. In California
505	coastline, fog Hg deposition, with only 2% volume proportion, accounts for 13% of
506	the total wet deposition (Weiss-Penzias et al., 2016). At high-elevation observatories
507	the contribution of cloud/fog Hg deposition is non-negligible. Converse et al. (2014)
508	found the annual Hg deposition to dew/frost at a high-elevation site in the U.S. to be

about 0.12 μ g m⁻² yr⁻¹, 2–3 orders of magnitude smaller than wet deposition. More

510 studies and a more standardized method for cloud/fog water sampling are needed.

511 5 Global Hg deposition on different terrestrial surfaces

512 Terrestrial surface type is a key factor for global Hg deposition. We summarized

- 513 existing studies to make comparisons for Hg deposition on different terrestrial
- 514 surfaces. Figures 6–8 exhibit wet, dry, and litterfall Hg deposition fluxes for different
- 515 terrestrial surface types.

As shown in Fig. 6a, the average Hg wet deposition flux follows the ascending

517 sequence of grasslands, croplands, savannas, and urban areas, which is mainly linked

to the precipitation levels on these surfaces. Barren areas have the lowest Hg wet

519 deposition flux due to their lowest precipitation. Water surfaces, e.g., coastal,

520 offshore, and lakeside sites, have a lower wet deposition level than the surfaces with a

similar amount of precipitation. This is possibly related to fog deposition. The

relatively low Hg concentration in precipitation on water surfaces could be caused by

523 fog scavenging, not only in high-elevation regions, but also in the near water areas.

524 Fog deposition is not considered in Hg wet deposition. Forests have a similar

525 precipitation level as urban areas, but exhibit much lower wet deposition fluxes. This

526 is probably because most forests are in remote areas with low total atmospheric Hg

527 concentration levels. It is the reactive Hg (GOM and PBM) that determines the Hg

528 concentration in precipitation. Hg wet deposition fluxes for different forest types are

shown in Fig. 6b. Forests have a similar precipitation level. The high wet deposition

fluxes for deciduous needle leaf and evergreen broadleaf forests are both induced by

samples from Chongqing, a city with a relatively high atmospheric Hg concentration

532 in China (Wang et al., 2009; Qin et al., 2016). In general, the Hg wet deposition flux

```
533 does not vary significantly among the five forest types.
```

The distribution of Hg dry deposition on various terrestrial surfaces is quite
different among the three atmospheric Hg forms (Fig. 7). GEM dry deposition is
equivalent to GOM and PBM dry deposition, even significantly higher than in forests.
As shown in Fig. 7a, the Hg oxidation process plays a more important role at sites

with higher elevations (more halogen free radicals) or more intensive solar radiations,

resulting in high GOM dry deposition levels for grasslands (including alpine meadow)

- and savannas, respectively. Urban areas with high GOM concentrations also have
- relatively high GOM dry deposition fluxes. The low GOM dry deposition fluxes on

542	moist surfaces (water and croplands) might be partially because of dew/fog
543	scavenging (Malcolm and Keeler. 2002; Zhang et al., 2009). The PBM dry deposition
544	flux is high on surfaces with high human activities (urban areas and croplands) and
545	low in vegetative areas implying the heavier PM pollution in urban and rural areas
546	than in remote areas (Fig. 7b). Agnan et al. (2015) and Zhu et al. (2016) made detailed
547	summaries of campaign-based GEM dry deposition observations, and addressed the
548	importance of natural Hg emission sources. Due to the lack of long-term observations
549	(no less than one year), we summarized model evaluations and one annual observation
550	dataset (Zhang et al., 2012; Bieser et al., 2014; Zhang et al., 2016; Enrico et al., 2016),
551	and found that the GEM dry deposition does not only depend on GEM concentration,
552	but also on the air-soil Hg exchange compensation point. Regarding the annual air-
553	surface Hg exchange, instead of an important natural source, forests tend to be a net
554	sink of atmospheric Hg (Fig. 7c). Therefore, long-term studies of GEM dry deposition
555	are of urgent need.
556	The litterfall Hg deposition flux and the Hg concentration in litterfall are shown in
557	Fig. 8. In general, evergreen forests have higher litterfall Hg concentrations than
558	deciduous forests due to longer accumulation time (Wright et al., 2016). Evergreen
559	broadleaf forests have not only high litterfall Hg concentrations but also high litterfall
560	rates (Shen et al., 2019), and consequently exhibit significantly high litterfall Hg
561	deposition fluxes. Comparing the levels of wet, dry, and litterfall Hg depositions in
562	forests, litterfall markedly takes the lead, especially for evergreen broadleaf forests.
563	This is consistent with the budget of global litterfall Hg deposition developed by
564	Wang et al. (2016a).

565 6 Summary and recommendations

Hg wet and dry depositions to terrestrial surfaces, as well as litterfall, throughfall and 566 cloud/fog depositions in forests, have been measured globally over the last two 567 decades to improve our understanding on the sink of atmospheric Hg. Owing to the 568 unified and reliable methodology, a global Hg wet deposition monitoring network has 569 been established, especially the matured network in North America. Dry deposition of 570 speciated atmospheric Hg (GEM, GOM and PBM), however, has diverse methods for 571 measurements, including the surrogate surface methods, the enclosure methods, and 572 573 the micrometeorological methods. For the Hg deposition forms in forests, litterfall and throughfall are easy to observe, while the measurements of cloud/fog deposition are 574

still preliminary. The Hg dry deposition flux can also be estimated based on speciated 575 Hg concentrations in the atmosphere using resistance models or bidirectional air-576 surface exchange models. Key parameters (e.g., the two scaling factor, α and β , for 577 578 cuticle or soil resistance) still generate large uncertainties. The land use category is an 579 important factor in modeling Hg deposition. Therefore, we compared the data for different terrestrial surfaces. Water surfaces could affect Hg wet deposition through 580 581 fog scavenging. Hg wet deposition is an indicator of the atmospheric Hg pollution 582 level for a certain region. Altitude is a key factor for GOM dry deposition. GEM dry 583 deposition is non-negligible compared to GOM and PBM dry deposition, especially for forests. Litterfall could be the dominant form of Hg deposition in forests. 584 Based on current understanding on global Hg deposition, we think future research 585 586 needs lie in the following aspects: (1) Different chemical forms of GOM (e.g., HgCl₂, HgBr₂, HgSO₄, etc.) could have 587 different dry deposition velocities. Quantification methods for concentrations of 588 different GOM species need to be developed to improve the evaluation of the Hg dry 589 590 deposition flux, which has much higher uncertainty than the wet, litterfall, and throughfall deposition fluxes. 591 (2) The resistance model for GOM dry deposition requires better parameterization 592 considering different GOM species. Moreover, the model should utilize more accurate 593 594 GOM concentration data. The KCl denuder-based method for GOM measurements has significant underestimation caused by high humidity or ozone concentration. 595 596 (3) The contribution GEM dry deposition has been underestimated previously. Inter-comparison between different methods for GEM dry deposition measurements 597 needs to be conducted to determine a unified method for monitoring networks. 598 599 (4) Cloud, fog or even dew Hg deposition needs careful investigation which requires more standardized sampling methods. At high-elevation sites cloud/fog Hg 600 601 deposition should be included in the total wet deposition. 602 Author contribution. Dr. Lei Zhang designed the review framework. Dr. Lei Zhang 603 604 and Peisheng Zhou did the most literature review work with contributions from Shuzhen Cao and Dr. Yu Zhao. Dr. Lei Zhang prepared the manuscript with 605 contributions from all co-authors. 606

607

- 608 Acknowledgements. This review work was supported by the National Natural Science
- 609 Foundation of China (No. 21876077) and the Fundamental Research Funds for the
- 610 Central Universities (No. 14380080 and No. 14380092).
- 611

612 **References**

613	Agnan, Y., Le Dantec, T., Moore, C. W., Edwards, G. C., and Obrist, D.: New
614	constraints on terrestrial surface atmosphere fluxes of gaseous elemental mercury
615	using a global database, Environ. Sci. Technol., 50, 507–524,
616	10.1021/acs.est5b04013, 2016.
617	Ahn, M. C., Yi, S. M., Holsen, T. M., and Han, Y. J.: Mercury wet deposition in rural
618	Korea: concentrations and fluxes, J. Environ. Monit., 13, 2748-2754,
619	10.1039/c1em10014a, 2011.
620	Åkerblom, S., Meili, M., and Bishop, K.: Organic matter in rain: an overlooked
621	influence on mercury deposition, Environ. Sci. Technol. Lett., 2, 128-132,
622	10.1021/acs.estlett.5b00009, 2015.
623	Bash, J. O.: Description and initial simulation of a dynamic bidirectional air-surface
624	exchange model for mercury in Community Multiscale Air Quality (CMAQ)
625	model, J. Geophys. Res., 115, 10.1029/2009jd012834, 2010.
626	Baya, A. P., and Van Heyst, B.: Assessing the trends and effects of environmental
627	parameters on the behaviour of mercury in the lower atmosphere over cropped
628	land over four seasons, Atmos. Chem. Phys., 10, 8617-8628, 10.5194/acp-10-
629	8617-2010, 2010.
630	Benoit, J. M., Cato, D. A., Denison, K. C., and Moreira, A. E.: Seasonal mercury
631	dynamics in a New England vernal pool, Wetlands, 33, 887–894,
632	10.1007/s13157-013-0447-4, 2013.
633	Bieser, J., De Simone, F., Gencarelli, C., Geyer, B., Hedgecock, I., Matthias, V.,
634	Travnikov, O., and Weigelt, A.: A diagnostic evaluation of modeled mercury wet
635	depositions in Europe using atmospheric speciated high-resolution observations,
636	Environ. Sci. Pollut. Res., 21, 9995–10012, 10.1007/s11356-014-2863-2, 2014.
637	Blackwell, B. D., and Driscoll, C. T.: Using foliar and forest floor mercury
638	concentrations to assess spatial patterns of mercury deposition, Environ. Pollut.,
639	202, 126–134, 10.1016/j.envpol.2015.02.036, 2015a.
640	Blackwell, B. D., and Driscoll, C. T.: Deposition of mercury in forests along a

641	montane elevation gradient, Environ. Sci. Technol., 49, 5363-5370,
642	10.1021/es505928w, 2015b.
643	Brunke, EG., Walters, C., Mkololo, T., Martin, L., Labuschagne, C., Silwana, B.,
644	Slemr, F., Weigelt, A., Ebinghaus, R., and Somerset, V.: Mercury in the
645	atmosphere and in rainwater at Cape Point, South Africa, Atmos. Environ., 125,
646	24-32, 10.1016/j.atmosenv.2015.10.059, 2016.
647	Buch, A. C., Correia, M. E., Teixeira, D. C., and Silva-Filho, E. V.: Characterization
648	of soil fauna under the influence of mercury atmospheric deposition in Atlantic
649	Forest, Rio de Janeiro, Brazil, J. Environ. Sci., 32, 217-227,
650	10.1016/j.jes.2015.01.009, 2015.
651	Bushey, J. T., Nallana, A. G., Montesdeoca, M. R., and Driscoll, C. T.: Mercury
652	dynamics of a northern hardwood canopy, Atmos. Environ., 42, 6905-6914,
653	10.1016/j.atmosenv.2008.05.043, 2008.
654	Castelle, S., Schäfer, J., Blanc, G., Dabrin, A., Lanceleur, L., and Masson, M.:
655	Gaseous mercury at the air-water interface of a highly turbid estuary (Gironde
656	Estuary, France), Mar. Chem., 117, 42–51, 10.1016/j.marchem.2009.01.005,
657	2009.
658	Castro, M. S., Moore, C., Sherwell, J., and Brooks, S. B.: Dry deposition of gaseous
659	oxidized mercury in Western Maryland, Sci. Total Environ., 417-418, 232-240,
660	10.1016/j.scitotenv.2011.12.044, 2012.
661	Chen, L., Li, Y., Liu, C., Guo, L., and Wang, X.: Wet deposition of mercury in
662	Qingdao, a coastal urban city in China: Concentrations, fluxes, and influencing
663	factors, Atmos. Environ., 174, 204–213, 10.1016/j.atmosenv.2017.11.059, 2018.
664	Cheng, I., Zhang, L., and Mao, H.: Relative contributions of gaseous oxidized
665	mercury and fine and coarse particle-bound mercury to mercury wet deposition
666	at nine monitoring sites in North America, J. Geophys. Res. Atmos., 120, 8549-
667	8562, 10.1002/2015jd023769, 2015.
668	Cheng , Z. L., Luo, Y., Zhang, T., and Duan, L.: Deposition of Sulfur, Nitrogen and
669	Mercury in Two Typical Forest Ecosystems in Southern China, Environ. Sci.,
670	2017.
671	Choi, HD., Sharac, T. J., and Holsen, T. M.: Mercury deposition in the Adirondacks:
672	A comparison between precipitation and throughfall, Atmos. Environ., 42, 1818-
673	1827, 10.1016/j.atmosenv.2007.11.036, 2008.

674	Ci, Z., Peng, F., Xue, X., and Zhang, X.: Air-surface exchange of gaseous mercury
675	over permafrost soil: an investigation at a high-altitude (4700 m a.s.l.) and
676	remote site in the central Qinghai-Tibet Plateau, Atmos. Chem. Phys., 16,
677	14741–14754, 10.5194/acp-16-14741-2016, 2016.
678	Ci, Z. J., Zhang, X. S., and Wang, Z. W.: Enhancing atmospheric mercury research in
679	China to improve the current understanding of the global mercury cycle: The
680	need for urgent and closely coordinated efforts, Environ. Sci. Technol., 46, 5636-
681	5642, 2012.
682	Connan, O., Maro, D., Hébert, D., Roupsard, P., Goujon, R., Letellier, B., and Le
683	Cavelier, S.: Wet and dry deposition of particles associated metals (Cd, Pb, Zn,
684	Ni, Hg) in a rural wetland site, Marais Vernier, France, Atmos. Environ., 67,
685	394-403, 10.1016/j.atmosenv.2012.11.029, 2013.
686	Converse, A. D., Riscassi, A. L., and Scanlon, T. M.: Seasonal variability in gaseous
687	mercury fluxes measured in a high-elevation meadow, Atmos. Environ., 44,
688	2176-2185, 10.1016/j.atmosenv.2010.03.024, 2010.
689	Converse, A. D., Riscassi, A. L., and Scanlon, T. M.: Seasonal contribution of dewfall
690	to mercury deposition determined using a micrometeorological technique and
691	dew chemistry, J. Geophys. Res. Atmos., 119(1), 284-292,
692	doi:10.1002/2013JD020491, 2014.
693	Dastoor, A. P., and Larocque, Y.: Global circulation of atmospheric mercury: a
694	modelling study, Atmos. Environ., 38, 147-161,
695	10.1016/j.atmosenv.2003.08.037, 2004.
696	Dutt, U., Nelson, P. F., Morrison, A. L., and Strezov, V.: Mercury wet deposition and
697	coal-fired power station contributions: An Australian study, Fuel Process.
698	Technol., 90, 1354–1359, 10.1016/j.fuproc.2009.06.019, 2009.
699	Eckley, C. S., Gustin, M., Lin, C. J., Li, X., and Miller, M. B.: The influence of
700	dynamic chamber design and operating parameters on calculated surface-to-air
701	mercury fluxes, Atmos. Environ., 44, 194–203, 10.1016/j.atmosenv.2009.10.013,
702	2010.
703	Eckley, C. S., Gustin, M., Marsik, F., and Miller, M. B.: Measurement of surface
704	mercury fluxes at active industrial gold mines in Nevada (USA), Sci. Total
705	Environ., 409, 514-522, 10.1016/j.scitotenv.2010.10.024, 2011.
706	Enrico, M., Roux, G. L., Marusczak, N., Heimburger, L. E., Claustres, A., Fu, X., Sun,
707	R., and Sonke, J. E.: Atmospheric mercury transfer to peat bogs dominated by

708	gaseous elemental mercury dry deposition, Environ. Sci. Technol., 50, 2405-
709	2412, 10.1021/acs.est.5b06058, 2016.
710	Fang, GC., Tsai, JH., Lin, YH., and Chang, CY.: Dry deposition of atmospheric
711	particle-bound mercury in the Middle Taiwan, Aerosol Air Qual. Res., 12, 1298-
712	1308, 10.4209/aaqr.2012.04.0093, 2012a.
713	Fang, GC., Lin, YH., and Chang, CY.: Use of mercury dry deposition samplers to
714	quantify dry deposition of particulate-bound mercury and reactive gaseous
715	mercury at a traffic sampling site, Environ. Forensics, 14, 182-186,
716	10.1080/15275922.2013.814177, 2013.
717	Fang, G. C., Zhang, L., and Huang, C. S.: Measurements of size-fractionated
718	concentration and bulk dry deposition of atmospheric particulate bound mercury,
719	Atmos. Environ., 61, 371-377, 10.1016/j.atmosenv.2012.07.052, 2012b.
720	Fisher, L. S., and Wolfe, M. H.: Examination of mercury inputs by throughfall and
721	litterfall in the Great Smoky Mountains National Park, Atmos. Environ., 47,
722	554–559, 10.1016/j.atmosenv.2011.10.017, 2012.
723	Fostier, A. H., Melendez-Perez, J. J., and Richter, L.: Litter mercury deposition in the
724	Amazonian rainforest, Environ. Pollut., 206, 605-610,
725	10.1016/j.envpol.2015.08.010, 2015.
726	Fragoso, C. P., Bernini, E., Araújo, B. F., Almeida, M. G. d., and Rezende, C. E. d.:
727	Mercury in litterfall and sediment using elemental and isotopic composition of
728	carbon and nitrogen in the mangrove of Southeastern Brazil, Estuarine Coastal
729	And Shelf Science, 202, 30–39, 10.1016/j.ecss.2017.12.005, 2018.
730	Fritsche, J., Obrist, D., Zeeman, M., Conen, F., Eugster, W., and Alewell, C.:
731	Elemental mercury fluxes over a sub-alpine grassland determined with two
732	micrometeorological methods, Atmos. Environ., 42, 2922-2933,
733	10.1016/j.atmosenv.2007.12.055, 2008a.
734	Fritsche, J., Wohlfahrt, G., Ammann, C., Zeeman, M., Hammerle, A., Obrist, D., and
735	Alewell, C.: Summertime elemental mercury exchange of temperate grasslands
736	on an ecosystem-scale, Atmos. Chem. Phys., 8, 10.5194/acp-8-7709-2008,
737	2008b.
738	Fu, X., Feng, X., Zhu, W., Zheng, W., Wang, S., and Lu, J. Y.: Total particulate and
739	reactive gaseous mercury in ambient air on the eastern slope of the Mt. Gongga
740	area, China, Appl. Geochem., 23, 408–418, 10.1016/j.apgeochem.2007.12.018,
741	2008.

742	Fu, X., Feng, X., Zhu, W., Rothenberg, S., Yao, H., and Zhang, H.: Elevated
743	atmospheric deposition and dynamics of mercury in a remote upland forest of
744	southwestern China, Environ. Pollut., 158, 2324–2333,
745	10.1016/j.envpol.2010.01.032, 2010a.
746	Fu, X. W., Feng, X., Dong, Z. Q., Yin, R. S., Wang, J. X., Yang, Z. R., and Zhang, H.:
747	Atmospheric gaseous elemental mercury (GEM) concentrations and mercury
748	depositions at a high-altitude mountain peak in south China, Atmos. Chem.
749	Phys., 10, 2425–2437, DOI 10.5194/acp-10-2425-2010, 2010b.
750	Fu, X., Feng, X., Sommar, J., and Wang, S.: A review of studies on atmospheric
751	mercury in China, Sci. Total Environ., 421–422, 73–81,
752	10.1016/j.scitotenv.2011.09.089, 2012.
753	Fu, X., Yang, X., Lang, X., Zhou, J., Zhang, H., Yu, B., Yan, H., Lin, CJ., and Feng,
754	X.: Atmospheric wet and litterfall mercury deposition at urban and rural sites in
755	China, Atmos. Chem. Phys., 16, 11547-11562, 10.5194/acp-16-11547-2016,
756	2016.
757	Gerson, J. R., Driscoll, C. T., Demers, J. D., Sauer, A. K., Blackwell, B. D.,
758	Montesdeoca, M. R., Shanley, J. B., and Ross, D. S.: Deposition of mercury in
759	forests across a montane elevation gradient: Elevational and seasonal patterns in
760	methylmercury inputs and production, J. Geophys. Res. Biogeo., 122, 1922-
761	1939, 10.1002/2016jg003721, 2017.
762	Gichuki, S. W., and Mason, R. P.: Mercury and metals in South African precipitation,
763	Atmos. Environ., 79, 286–298, 10.1016/j.atmosenv.2013.04.009, 2013.
764	Gichuki, S. W., and Mason, R. P.: Wet and dry deposition of mercury in Bermuda,
765	Atmos. Environ., 87, 249–257, 10.1016/j.atmosenv.2014.01.025, 2014.
766	Gong, P., Wang, X. P., Xue, Y. G., Xu, B. Q., and Yao, T. D.: Mercury distribution in
767	the foliage and soil profiles of the Tibetan forest: processes and implications for
768	regional cycling, Environ. Pollut., 188, 94-101, 10.1016/j.envpol.2014.01.020,
769	2014.
770	Gratz, L. E., and Keeler, G. J.: Sources of mercury in precipitation to Underhill, VT,
771	Atmos. Environ., 45, 5440-5449, 10.1016/j.atmosenv.2011.07.001, 2011.
772	Guo, J., Kang, S., Huang, J., Zhang, Q., Rupakheti, M., Sun, S., Tripathee, L.,
773	Rupakheti, D., Panday, A. K., Sillanpaa, M., and Paudyal, R.: Characterizations
774	of atmospheric particulate-bound mercury in the Kathmandu Valley of Nepal,
775	South Asia, Sci. Total Environ., 579, 1240–1248,

770	10 1016/i poitotomy 2016 11 110 2017
776	10.1016/j.scitotenv.2016.11.110, 2017.
777	Guo, Y., Feng, X., Li, Z., He, T., Yan, H., Meng, B., Zhang, J., and Qiu, G.:
778	Distribution and wet deposition fluxes of total and methyl mercury in Wujiang
779	River Basin, Guizhou, China, Atmos. Environ., 42, 7096–7103,
780	10.1016/j.atmosenv.2008.06.006, 2008.
781	Gustin, M. S., Lindberg, S. E., and Weisberg, P. J.: An update on the natural sources
782	and sinks of atmospheric mercury, Appl. Geochem., 23, 482–493,
783	10.1016/j.apgeochem.2007.12.010, 2008.
784	Gustin, M. S., Weiss-Penzias, P. S., and Peterson, C.: Investigating sources of gaseous
785	oxidized mercury in dry deposition at three sites across Florida, USA, Atmos.
786	Chem. Phys., 12, 9201–9219, 10.5194/acp-12-9201-2012, 2012.
787	Gustin, M. S., Huang, J., Miller, M. B., Peterson, C., Jaffe, D. A., Ambrose, J., Finley,
788	B. D., Lyman, S. N., Call, K., Talbot, R., Feddersen, D., Mao, H., and Lindberg,
789	S. E.: Do we understand what the mercury speciation instruments are actually
790	measuring? Results of RAMIX, Environ. Sci. Technol., 47, 7295–7306,
791	10.1021/es3039104, 2013.
792	Gustin, M. S., Amos, H. M., Huang, J., Miller, M. B., and Heidecorn, K.: Measuring
793	and modeling mercury in the atmosphere: a critical review, Atmos. Chem. Phys.,
794	15, 5697–5713, 10.5194/acp-15-5697-2015, 2015.
795	Hall, N. L., Dvonch, J. T., Marsik, F. J., Barres, J. A., and Landis, M. S.: An artificial
796	turf-based surrogate surface collector for the direct measurement of atmospheric
797	mercury dry deposition, Int. J. Environ. Res. Public Health, 14,
798	10.3390/ijerph14020173, 2017.
799	Han, JS., Seo, YS., Kim, MK., Holsen, T. M., and Yi, SM.: Total atmospheric
800	mercury deposition in forested areas in South Korea, Atmos. Chem. Phys., 16,
801	7653-7662, 10.5194/acp-16-7653-2016, 2016.
802	Hansen, A. M., and Gay, D. A.: Observations of mercury wet deposition in Mexico,
803	Environ. Sci. Pollut. Res. Int., 20, 8316-8325, 10.1007/s11356-013-2012-3,
804	2013.
805	Holmes, H. A., Pardyjak, E. R., Perry, K. D., and Abbott, M. L.: Gaseous dry
806	deposition of atmospheric mercury: A comparison of two surface resistance
807	models for deposition to semiarid vegetation, J. Geophys. Res., 116,
808	10.1029/2010jd015182, 2011.
809	Huang, J., Choi, H. D., Landis, M. S., and Holsen, T. M.: An application of passive

samplers to understand atmospheric mercury concentration and dry deposition
spatial distributions, J Environ Monit, 14, 2976-2982, 10.1039/c2em30514c,
2012a.
Huang, J., Kang, S. C., Zhang, Q. G., Yan, H. Y., Guo, J. M., Jenkins, M. G., Zhang,
G. S., and Wang, K.: Wet deposition of mercury at a remote site in the Tibetan
Plateau: Concentrations, speciation, and fluxes, Atmos. Environ., 62, 540-550,
10.1016/j.atmosenv.2012.09.003, 2012b.
Huang, J., Kang, S., Wang, S., Wang, L., Zhang, Q., Guo, J., Wang, K., Zhang, G.,
and Tripathee, L.: Wet deposition of mercury at Lhasa, the capital city of Tibet,
Sci. Total Environ., 447, 123–132, 10.1016/j.scitotenv.2013.01.003, 2013.
Huang, J., and Gustin, M. S.: Use of passive sampling methods and models to
understand sources of mercury deposition to high elevation sites in the Western
United States, Environ. Sci. Technol., 49, 432-441, 10.1021/es502836w, 2014.
Huang, J., Lyman, S. N., Hartman, J. S., and Gustin, M. S.: A review of passive
sampling systems for ambient air mercury measurements, Environ. Sci.:
Processes Impacts, 16, 374-392, 10.1039/c3em00501a, 2014.
Huang, J., and Gustin, M. S.: Uncertainties of gaseous oxidized mercury
measurements using KCl-coated denuders, cation-exchange membranes, and
nylon membranes: Humidity influences, Environ. Technol., 49, 6102-6108,
10.1021/acs.est.5b00098, 2015.
Huang, J., Kang, S., Zhang, Q., Guo, J., Sillanpaa, M., Wang, Y., Sun, S., Sun, X., and
Tripathee, L.: Characterizations of wet mercury deposition on a remote high-
elevation site in the southeastern Tibetan Plateau, Environ. Pollut., 206, 518–526,
10.1016/j.envpol.2015.07.024, 2015.
Huang, J., Kang, S., Guo, J., Zhang, Q., Cong, Z., Sillanpää, M., Zhang, G., Sun, S.,
and Tripathee, L.: Atmospheric particulate mercury in Lhasa city, Tibetan
Plateau, Atmos. Environ., 142, 433-441, 10.1016/j.atmosenv.2016.08.021, 2016.
Huang, J. Y., Miller, M. B., Edgerton, E., and Gustin, M. S.: Deciphering potential
chemical compounds of gaseous oxidized mercury in Florida, USA, Atmos.
Chem. Phys., 17, 1689–1698, 10.5194/acp-17-1689-2017, 2017.
Juillerat, J. I., Ross, D. S., and Bank, M. S.: Mercury in litterfall and upper soil
horizons in forested ecosystems in Vermont, USA, Environ. Toxicol. Chem., 31,
1720–1729, 10.1002/etc.1896, 2012.
Kamp, J., Skov, H., Jensen, B., and Sorensen, L. L.: Fluxes of gaseous elemental

844	mercury (GEM) in the High Arctic during atmospheric mercury depletion events
845	(AMDEs), Atmos. Chem. Phys., 18, 6923-6938, 10.5194/acp-18-6923-2018,
846	2018.
847	Katata, G.: Fogwater deposition modeling for terrestrial ecosystems: A review of
848	developments and measurements, J Geophys Res-Atmos, 119, Artn
849	2014jd021669
850	10.1002/2014jd021669, 2014.
851	Kim, MG., Lee, BK., and Kim, HJ.: Cloud/fog water chemistry at a high
852	elevation site in South Korea, J. Atmos. Chem., 55, 13-29, 10.1007/s10874-005-
853	9004-8, 2006.
854	Lai, S. O., Huang, J., Hopke, P. K., and Holsen, T. M.: An evaluation of direct
855	measurement techniques for mercury dry deposition, Sci. Total Environ., 409,
856	1320-1327, 10.1016/j.scitotenv.2010.12.032, 2011.
857	Larssen, T., de Wit, H. A., Wiker, M., and Halse, K.: Mercury budget of a small
858	forested boreal catchment in southeast Norway, Sci. Total Environ., 404, 290-
859	296, 10.1016/j.scitotenv.2008.03.013, 2008.
860	Lawson, S. T., Scherbatskoy, T. D., Malcolm, E. G., and Keeler, G. J.: Cloud water
861	and throughfall deposition of mercury and trace elements in a high elevation
862	spruce-fir forest at Mt. Mansfield, Vermont, J. Environ. Monit., 5, 578-583,
863	10.1039/b210125d, 2003.
864	Lin, C. J., Zhu, W., Li, X., Feng, X., Sommar, J., and Shang, L.: Novel dynamic flux
865	chamber for measuring air-surface exchange of Hg(o) from soils, Environ. Sci.
866	Technol., 46, 8910-8920, 10.1021/es3012386, 2012.
867	Lindberg, S. E., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X. B., Fitzgerald,
868	W., Pirrone, N., Prestbo, E., and Seigneur, C.: A synthesis of progress and
869	uncertainties in attributing the sources of mercury in deposition, Ambio, 36, 19-
870	32, 2007.
871	Lombard, M. A. S., Bryce, J. G., Mao, H., and Talbot, R.: Mercury deposition in
872	Southern New Hampshire, 2006–2009, Atmos. Chem. Phys., 11, 7657–7668,
873	10.5194/acp-11-7657-2011, 2011.
874	Lu, A., and Liu, H.: Study on the time distribution characteristics and source of wet
875	deposition mercury in weinan city, Journal of Arid Land Resources and
876	Environment, 2018.

877	Luo, Y., Duan, L., Wang, L., Xu, G., Wang, S., and Hao, J.: Mercury concentrations in
878	forest soils and stream waters in northeast and south China, Sci. Total Environ.,
879	496, 714–720, 10.1016/j.scitotenv.2014.07.036, 2014.
880	Luo, Y., Duan, L., Driscoll, C. T., Xu, G. Y., Shao, M. S., Taylor, M., Wang, S. X., and
881	Hao, J. M.: Foliage/atmosphere exchange of mercury in a subtropical coniferous
882	forest in south China, J. Geophys. Res. Biogeo., 121, 2006-2016,
883	10.1002/2016jg003388, 2016.
884	Lyman, S. N., Gustin, M. S., Prestbo, E. M., and Marsik, F. J.: Estimation of dry
885	deposition of atmospheric mercury in Nevada by direct and indirect methods,
886	Environ. Sci. Technol., 41, 1970–1976, 2007.
887	Lyman, S. N., Gustin, M. S., Prestbo, E. M., Kilner, P. I., Edgerton, E., and Hartsell,
888	B.: Testing and application of surrogate surfaces for understanding potential
889	gaseous oxidized mercury dry deposition, Environ. Sci. Technol., 43, 6235-6241,
890	2009.
891	Lyman, S. N., Jaffe, D. A., and Gustin, M. S.: Release of mercury halides from KCl
892	denuders in the presence of ozone, Atmos. Chem. Phys., 10, 8197-8204,
893	10.5194/acp-10-8197-2010, 2010.
894	Lynam, M., Dvonch, J. T., Barres, J., and Percy, K.: Atmospheric wet deposition of
895	mercury to the Athabasca Oil Sands Region, Alberta, Canada, Air Qual. Atmos.
896	Health, 11, 83–93, 10.1007/s11869-017-0524-6, 2017.
897	Lynam, M. M., Dvonch, J. T., Hall, N. L., Morishita, M., and Barres, J. A.: Spatial
898	patterns in wet and dry deposition of atmospheric mercury and trace elements in
899	central Illinois, USA, Environ. Sci. Pollut. Res. Int., 21, 4032-4043,
900	10.1007/s11356-013-2011-4, 2014.
901	Ma, M., Wang, D., Du, H., Sun, T., Zhao, Z., and Wei, S.: Atmospheric mercury
902	deposition and its contribution of the regional atmospheric transport to mercury
903	pollution at a national forest nature reserve, southwest China, Environ. Sci.
904	Pollut. Res. Int., 22, 20007–20018, 10.1007/s11356-015-5152-9, 2015.
905	Ma, M., Wang, D., Du, H., Sun, T., Zhao, Z., Wang, Y., and Wei, S.: Mercury
906	dynamics and mass balance in a subtropical forest, southwestern China, Atmos.
907	Chem. Phys., 16, 4529–4537, 10.5194/acp-16-4529-2016, 2016.
908	Ma, M., Sun, T., Du, H., and Wang, D.: A Two-Year Study on Mercury Fluxes from
909	the Soil under Different Vegetation Cover in a Subtropical Region, South China,
910	Atmosphere, 9, 30, 10.3390/atmos9010030, 2018.

911	Malcolm, E. G., Keeler, G. J., Lawson, S. T., and Sherbatskoy, T. D.: Mercury and
912	trace elements in cloud water and precipitation collected on Mt. Mansfield,
913	Vermont, J. Environ. Monit., 5, 584, 10.1039/b210124f, 2003.
914	Marsik, F. J., Keeler, G. J., and Landis, M. S.: The dry-deposition of speciated
915	mercury to the Florida Everglades: Measurements and modeling, Atmos.
916	Environ., 41, 136-149, 10.1016/j.atmosenv.2006.07.032, 2007.
917	Marumoto, K., and Matsuyama, A.: Mercury speciation in wet deposition samples
918	collected from a coastal area of Minamata Bay, Atmos. Environ., 86, 220-227,
919	10.1016/j.atmosenv.2013.12.011, 2014.
920	McClure, C. D., Jaffe, D. A., and Edgerton, E. S.: Evaluation of the KCl denuder
921	method for gaseous oxidized mercury using HgBr2 at an in-service AMNet site,
922	Environ. Sci. Technol., 48, 11437–11444, 10.1021/es502545k, 2014.
923	Miller, M. B., Gustin, M. S., and Eckley, C. S.: Measurement and scaling of air-
924	surface mercury exchange from substrates in the vicinity of two Nevada gold
925	mines, Sci. Total Environ., 409, 3879-3886, 10.1016/j.scitotenv.2011.05.040,
926	2011.
927	Navrátil, T., Shanley, J., Rohovec, J., Hojdová, M., Penížek, V., and Buchtová, J.:
928	Distribution and pools of mercury in Czech forest soils, Water Air and Soil
929	Pollution, 225, 10.1007/s11270-013-1829-1, 2014.
930	Nguyen, D. L., Kim, J. Y., Shim, S. G., Ghim, Y. S., and Zhang, X. S.: Shipboard and
931	ground measurements of atmospheric particulate mercury and total mercury in
932	precipitation over the Yellow Sea region, Environ. Pollut., 219, 262–274,
933	10.1016/j.envpol.2016.10.020, 2016.
934	Obrist, D., Conen, F., Vogt, R., Siegwolf, R., and Alewell, C.: Estimation of Hg0
935	exchange between ecosystems and the atmosphere using 222Rn and Hg0
936	concentration changes in the stable nocturnal boundary layer, Atmos. Environ.,
937	40, 856–866, 10.1016/j.atmosenv.2005.10.012, 2006.
938	Obrist, D., Johnson, D. W., and Lindberg, S. E.: Mercury concentrations and pools in
939	four Sierra Nevada forest sites, and relationships to organic carbon and nitrogen,
940	Biogeosciences, 6, 765–777, DOI 10.5194/bg-6-765-2009, 2009.
941	Obrist, D., Johnson, D. W., and Edmonds, R. L.: Effects of vegetation type on
942	mercury concentrations and pools in two adjacent coniferous and deciduous
943	forests, Journal of Plant Nutrition and Soil Science, 175, 68-77,
944	10.1002/jpln.201000415, 2012.

945	Obrist, D., Agnan, Y., Jiskra, M., Olson, C. L., Colegrove, D. P., Hueber, J., Moore, C.
946	W., Sonke, J. E., and Helmig, D.: Tundra uptake of atmospheric elemental
947	mercury drives Arctic mercury pollution, Nat. Clim. Change, 547, 201-204,
948	10.1038/nature22997, 2017.
949	Obrist, D., Kirk, J. L., Zhang, L., Sunderland, E. M., Jiskra, M., and Selin, N. E.: A
950	review of global environmental mercury processes in response to human and
951	natural perturbations: Changes of emissions, climate, and land use, Ambio, 47,
952	116–140, 10.1007/s13280-017-1004-9, 2018.
953	Osterwalder, S., Fritsche, J., Alewell, C., Schmutz, M., Nilsson, M. B., Jocher, G.,
954	Sommar, J., Rinne, J., and Bishop, K.: A dual-inlet, single detector relaxed eddy
955	accumulation system for long-term measurement of mercury flux, Atmos. Meas.
956	Tech., 9, 509–524, 10.5194/amt-9-509-2016, 2016.
957	Osterwalder, S., Sommar, J., Åkerblom, S., Jocher, G., Fritsche, J., Nilsson, M. B.,
958	Bishop, K., and Alewell, C.: Comparative study of elemental mercury flux
959	measurement techniques over a Fennoscandian boreal peatland, Atmos. Environ.,
960	172, 16–25, 10.1016/j.atmosenv.2017.10.025, 2018.
961	Peterson, C., Alishahi, M., and Gustin, M. S.: Testing the use of passive sampling
962	systems for understanding air mercury concentrations and dry deposition across
963	Florida, USA, Sci. Total Environ., 424, 297–307,
964	10.1016/j.scitotenv.2012.02.031, 2012.
965	Pierce, A. M., Moore, C. W., Wohlfahrt, G., Hortnagl, L., Kljun, N., and Obrist, D.:
966	Eddy covariance flux measurements of gaseous elemental mercury using cavity
967	ring-down spectroscopy, Environ. Sci. Technol., 49, 1559–1568,
968	10.1021/es505080z, 2015.
969	Prestbo, E. M., and Gay, D. A.: Wet deposition of mercury in the US and Canada,
970	1996-2005: Results and analysis of the NADP mercury deposition network
971	(MDN), Atmos. Environ., 43, 4223-4233, 10.1016/j.atmosenv.2009.05.028,
972	2009.
973	Qin, C., Wang, Y., Peng, Y., and Wang, D.: Four-year record of mercury wet
974	deposition in one typical industrial city in southwest China, Atmos. Environ.,
975	142, 442–451, 10.1016/j.atmosenv.2016.08.016, 2016.
976	Richardson, J. B., and Friedland, A. J.: Mercury in coniferous and deciduous upland
977	forests in Northern New England, USA: implications from climate change,
978	Biogeosciences, 12, 11463-11498, 10.5194/bgd-12-11463-2015, 2015.

979	Risch, M., and Kenski, D.: Spatial Patterns and Temporal Changes in Atmospheric-
980	Mercury Deposition for the Midwestern USA, 2001–2016, Atmosphere, 9, 29,
981	10.3390/atmos9010029, 2018.
982	Risch, M. R., DeWild, J. F., Gay, D. A., Zhang, L., Boyer, E. W., and Krabbenhoft, D.
983	P.: Atmospheric mercury deposition to forests in the eastern USA, Environ.
984	Pollut., 228, 8-18, 10.1016/j.envpol.2017.05.004, 2017.
985	Sakata, M., and Marumoto, K.: Wet and dry deposition fluxes of mercury in Japan,
986	Atmos. Environ., 39, 3139-3146, 10.1016/j.atmosenv.2005.01.049, 2005.
987	Sather, M. E., Mukerjee, S., Smith, L., Mathew, J., Jackson, C., Callison, R., Scrapper,
988	L., Hathcoat, A., Adam, J., Keese, D., Ketcher, P., Brunette, R., Karlstrom, J.,
989	and Van der Jagt, G.: Gaseous oxidized mercury dry deposition measurements in
990	the Four Corners area and Eastern Oklahoma, U.S.A, Atmos. Pollut. Res., 4,
991	168–180, 10.5094/apr.2013.017, 2013.
992	Sather, M. E., Mukerjee, S., Allen, K. L., Smith, L., Mathew, J., Jackson, C., Callison,
993	R., Scrapper, L., Hathcoat, A., Adam, J., Keese, D., Ketcher, P., Brunette, R.,
994	Karlstrom, J., and Van der Jagt, G.: Gaseous oxidized mercury dry deposition
995	measurements in the southwestern USA: A comparison between Texas, Eastern
996	Oklahoma, and the Four Corners Area, Sci. World J., 2014, 580723,
997	10.1155/2014/580723, 2014.
998	Schroeder, W. H., and Munthe, J.: Atmospheric mercury - An overview, Atmos.
999	Environ., 32, 809–822, 1998.
1000	Schwab, J. J., Casson, P., Brandt, R., Husain, L., Dutkewicz, V., Wolfe, D., Demerjian,
1001	K. L., Civerolo, K. L., Rattigan, O. V., Felton, H. D., and Dukett, J. E.:
1002	Atmospheric chemistry measurements at Whiteface Mountain, NY: Cloud water
1003	chemistry, precipitation chemistry, and particulate matter, Aerosol Air Qual. Res.,
1004	16, 841–854, 10.4209/aaqr.2015.05.0344, 2016.
1005	Seinfeld, J. H., and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air
1006	Pollution to Climate Change (3rd Edition), Wiley, 2016.
1007	Seo, YS., Han, YJ., Choi, HD., Holsen, T. M., and Yi, SM.: Characteristics of
1008	total mercury (TM) wet deposition: Scavenging of atmospheric mercury species,
1009	Atmos. Environ., 49, 69-76, 10.1016/j.atmosenv.2011.12.031, 2012.
1010	Sheu, GR., and Lin, NH.: Mercury in cloud water collected on Mt. Bamboo in
1011	northern Taiwan during the northeast monsoon season, Atmos. Environ., 45,
1012	4454-4462, 10.1016/j.atmosenv.2011.05.036, 2011.

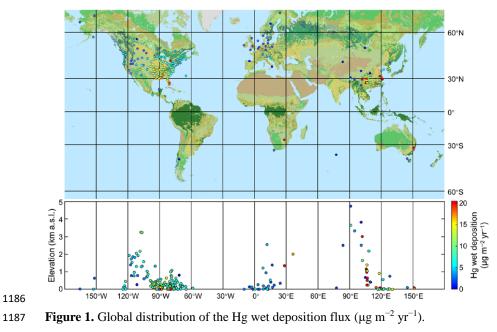
1013	Sheu, GR., and Lin, NH.: Characterizations of wet mercury deposition to a remote
1014	islet (Pengjiayu) in the subtropical Northwest Pacific Ocean, Atmos. Environ.,
1015	77, 474-481, 10.1016/j.atmosenv.2013.05.038, 2013.
1016	Siudek, P., Kurzyca, I., and Siepak, J.: Atmospheric deposition of mercury in central
1017	Poland: Sources and seasonal trends, Atmos. Res., 170, 14-22,
1018	10.1016/j.atmosres.2015.11.004, 2016.
1019	Sommar, J., Zhu, W., Lin, CJ., and Feng, X.: Field approaches to measure Hg
1020	exchange between natural surfaces and the atmosphere—A review, Crit. Rev.
1021	Environ. Sci. Technol., 43, 1657–1739, 10.1080/10643389.2012.671733, 2013a.
1022	Sommar, J., Zhu, W., Shang, L., Feng, X., and Lin, CJ.: A whole-air relaxed eddy
1023	accumulation measurement system for sampling vertical vapour exchange of
1024	elemental mercury, Tellus B Chem. Phys. Meteorol., 65, 19940,
1025	10.3402/tellusb.v65i0.19940, 2013b.
1026	Sommar, J., Zhu, W., Shang, L., Lin, CJ., and Feng, X.: Seasonal variations in
1027	metallic mercury (Hg0) vapor exchange over biannual wheat-corn rotation
1028	cropland in the North China Plain, Biogeosciences, 13, 2029–2049, 10.5194/bg-
1029	13-2029-2016, 2016.
1030	Sprovieri, F., Pirrone, N., Bencardino, M., D'Amore, F., Angot, H., Barbante, C.,
1031	Brunke, E. G., Arcega-Cabrera, F., Cairns, W., Comero, S., Dieguez, M. D.,
1032	Dommergue, A., Ebinghaus, R., Feng, X. B., Fu, X. W., Garcia, P. E., Gawlik, B.
1033	M., Hagestrom, U., Hansson, K., Horvat, M., Kotnik, J., Labuschagne, C.,
1034	Magand, O., Martin, L., Mashyanov, N., Mkololo, T., Munthe, J., Obolkin, V.,
1035	Islas, M. R., Sena, F., Somerset, V., Spandow, P., Varde, M., Walters, C.,
1036	Wangberg, I., Weigelt, A., Yang, X., and Zhang, H.: Five-year records of mercury
1037	wet deposition flux at GMOS sites in the Northern and Southern hemispheres,
1038	Atmos. Chem. Phys., 17, 2689–2708, 10.5194/acp-17-2689-2017, 2017.
1039	Stankwitz, C., Kaste, J. M., and Friedland, A. J.: Threshold increases in soil lead and
1040	mercury from tropospheric deposition across an elevational gradient, Environ.
1041	Sci. Technol., 46, 8061-8068, 10.1021/es204208w, 2012.
1042	Teixeira, D. C., Montezuma, R. C., Oliveira, R. R., and Silva-Filho, E. V.: Litterfall
1043	mercury deposition in Atlantic forest ecosystem from SE-Brazil, Environ. Pollut.,
1044	164, 11–15, 10.1016/j.envpol.2011.10.032, 2012.
1045	Teixeira, D. C., Lacerda, L. D., and Silva-Filho, E. V.: Mercury sequestration by
1046	rainforests: The influence of microclimate and different successional stages,

1047	Chemosphere, 168, 1186–1193, 10.1016/j.chemosphere.2016.10.081, 2017.
1048	Torseth, K., Aas, W., Breivik, K., Fjaeraa, A. M., Fiebig, M., Hjellbrekke, A. G.,
1049	Myhre, C. L., Solberg, S., and Yttri, K. E.: Introduction to the European
1050	Monitoring and Evaluation Programme (EMEP) and observed atmospheric
1051	composition change during 1972-2009, Atmos. Chem. Phys., 12, 5447-5481,
1052	10.5194/acp-12-5447-2012, 2012.
1053	Wan, Q., Feng, X., Lu, J., Zheng, W., Song, X., Li, P., Han, S., and Xu, H.:
1054	Atmospheric mercury in Changbai Mountain area, northeastern China II. The
1055	distribution of reactive gaseous mercury and particulate mercury and mercury
1056	deposition fluxes, Environ. Res., 109, 721-727, 10.1016/j.envres.2009.05.006,
1057	2009.
1058	Wang, X., Lin, C. J., and Feng, X.: Sensitivity analysis of an updated bidirectional
1059	air-surface exchange model for elemental mercury vapor, Atmos. Chem. Phys.,
1060	14, 6273–6287, 10.5194/acp-14-6273-2014, 2014.
1061	Wang, X., Bao, Z., Lin, C. J., Yuan, W., and Feng, X.: Assessment of global mercury
1062	deposition through litterfall, Environ. Sci. Technol., 50, 8548–8557,
1063	10.1021/acs.est.5b06351, 2016a.
1064	Wang, X., Lin, CJ., Lu, Z., Zhang, H., Zhang, Y., and Feng, X.: Enhanced
1065	accumulation and storage of mercury on subtropical evergreen forest floor:
1066	Implications on mercury budget in global forest ecosystems, J. Geophys. Res.
1067	Biogeo., 121, 2096–2109, 10.1002/2016jg003446, 2016b.
1068	Wang, Z., Zhang, X., Xiao, J., Ci, Z., and Yu, P.: Mercury fluxes and pools in three
1069	subtropical forested catchments, southwest China, Environ. Pollut., 157, 801-
1070	808, 10.1016/j.envpol.2008.11.018, 2009.
1071	Weiss-Penzias, P., Fernandez, D., Moranville, R., and Saltikov, C.: A low cost system
1072	for detecting fog events and triggering an active fog water collector, Aerosol Air
1073	Qual. Res., 18, 214–233, 10.4209/aaqr.2016.11.0508, 2018.
1074	Weiss-Penzias, P. S., Gustin, M. S., and Lyman, S. N.: Sources of gaseous oxidized
1075	mercury and mercury dry deposition at two southeastern U.S. sites, Atmos.
1076	Environ., 45, 4569–4579, 10.1016/j.atmosenv.2011.05.069, 2011.
1077	Weiss-Penzias, P. S., Gay, D. A., Brigham, M. E., Parsons, M. T., Gustin, M. S., and
1078	Ter Schure, A.: Trends in mercury wet deposition and mercury air concentrations
1079	across the U.S. and Canada, Sci. Total Environ., 568, 546-556,
1080	10.1016/j.scitotenv.2016.01.061, 2016.

1081	Wetang'ula: Preliminary assessment of total mercury in bulk precipitation around
1082	Olkaria Area, Kenya, Journal of Environmental Science and Engineering, 1585-
1083	1595, 2011.
1084	Wright, G., Gustin, M. S., Weiss-Penzias, P., and Miller, M. B.: Investigation of
1085	mercury deposition and potential sources at six sites from the Pacific Coast to the
1086	Great Basin, USA, Sci. Total Environ., 470-471, 1099–1113,
1087	10.1016/j.scitotenv.2013.10.071, 2014.
1088	Wright, L. P., and Zhang, L.: An approach estimating bidirectional air-surface
1089	exchange for gaseous elemental mercury at AMNet sites, J. Adv. Model. Earth
1090	Sy., 7, 35–49, 10.1002/2014ms000367, 2015.
1091	Wright, L. P., Zhang, L. M., and Marsik, F. J.: Overview of mercury dry deposition,
1092	litterfall, and throughfall studies, Atmos. Chem. Phys., 16, 13399-13416,
1093	10.5194/acp-16-13399-2016, 2016.
1094	Xu, L., Chen, J., Yang, L., Yin, L., Yu, J., Qiu, T., and Hong, Y.: Characteristics of
1095	total and methyl mercury in wet deposition in a coastal city, Xiamen, China:
1096	Concentrations, fluxes and influencing factors on Hg distribution in precipitation,
1097	Atmos. Environ., 99, 10-16, 10.1016/j.atmosenv.2014.09.054, 2014.
1098	Yu, Q., Luo, Y., Wang, S. X., Wang, Z. Q., Hao, J. M., and Duan, L.: Gaseous
1099	elemental mercury (GEM) fluxes over canopy of two typical subtropical forests
1100	in south China, Atmos. Chem. Phys., 18, 495–509, 10.5194/acp-18-495-2018,
1101	2018.
1102	Zhang, L., Brook, J. R., and Vet, R.: A revised parameterization for gaseous dry
1103	deposition in air-quality models, Atmos. Chem. Phys., 3, 2067–2082, DOI
1104	10.5194/acp-3-2067-2003, 2003.
1105	Zhang, L., Blanchard, P., Gay, D. A., Prestbo, E. M., Risch, M. R., Johnson, D.,
1106	Narayan, J., Zsolway, R., Holsen, T. M., Miller, E. K., Castro, M. S., Graydon, J.
1107	A., St Louis, V. L., and Dalziel, J.: Estimation of speciated and total mercury dry
1108	deposition at monitoring locations in eastern and central North America, Atmos.
1109	Chem. Phys., 12, 4327–4340, 10.5194/acp-12-4327-2012, 2012.
1110	Zhang, L., and He, Z.: Technical Note: An empirical algorithm estimating dry
1111	deposition velocity of fine, coarse and giant particles, Atmos. Chem. Phys., 14,
1112	3729–3737, 10.5194/acp-14-3729-2014, 2014.
1113	Zhang, L., Wang, S. X., Wu, Q. R., Wang, F. Y., Lin, CJ., Zhang, L. M., Hui, M. L.,
1114	Yang, M., Su, H. T., and Hao, J. M.: Mercury transformation and speciation in

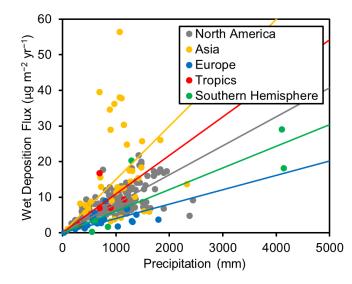
1115	flue gases from anthropogenic emission sources: a critical review, Atmos. Chem.
1116	Phys., 16, 2417–2433, 10.5194/acp-16-2417-2016, 2016a.
1117	Zhang, L., Wu, Z., Cheng, I., Wright, L. P., Olson, M. L., Gay, D. A., Risch, M. R.,
1118	Brooks, S., Castro, M. S., Conley, G. D., Edgerton, E. S., Holsen, T. M., Luke,
1119	W., Tordon, R., and Weiss-Penzias, P.: The estimated six-year mercury dry
1120	deposition across North America, Environ. Sci. Technol., 50, 12864–12873,
1121	10.1021/acs.est.6b04276, 2016b.
1122	Zhang, L. M., Gong, S. L., Padro, J., and Barrie, L.: A size-segregated particle dry
1123	deposition scheme for an atmospheric aerosol module, Atmos. Environ., 35, 549-
1124	560, Doi 10.1016/S1352-2310(00)00326-5, 2001.
1125	Zhang, L. M., Moran, M. D., Makar, P. A., Brook, J. R., and Gong, S. L.: Modelling
1126	gaseous dry deposition in AURAMS: A unified regional air-quality modelling
1127	system, Atmos. Environ., 36, 537-560, Doi 10.1016/S1352-2310(01)00447-2,
1128	2002.
1129	Zhang, L. M., Wright, L. P., and Blanchard, P.: A review of current knowledge
1130	concerning dry deposition of atmospheric mercury, Atmos. Environ., 43, 5853-
1131	5864, 10.1016/j.atmosenv.2009.08.019, 2009.
1132	Zhang, Y., Liu, R., Wang, Y., Cui, X., and Qi, J.: Change characteristic of atmospheric
1133	particulate mercury during dust weather of spring in Qingdao, China, Atmos.
1134	Environ., 102, 376-383, 10.1016/j.atmosenv.2014.12.005, 2015.
1135	Zhao, Z., Wang, D., Wang, Y., Mu, Z., and Zhu, J.: Wet deposition flux and runoff
1136	output flux of mercury in a typical small agricultural watershed in Three Gorges
1137	Reservoir areas, Environ. Sci. Pollut. Res. Int., 22, 5538-5551, 10.1007/s11356-
1138	014-3701-2, 2015.
1139	Zhou, J., Wang, Z., Sun, T., Zhang, H., and Zhang, X.: Mercury in terrestrial forested
1140	systems with highly elevated mercury deposition in southwestern China: The risk
1141	to insects and potential release from wildfires, Environ. Pollut., 212, 188-196,
1142	10.1016/j.envpol.2016.01.003, 2016.
1143	Zhou, J., Wang, Z., Zhang, X., and Gao, Y.: Mercury concentrations and pools in four
1144	adjacent coniferous and deciduous upland forests in Beijing, China, J. Geophys.
1145	Res. Biogeo., 122, 1260–1274, 10.1002/2017jg003776, 2017.
1146	Zhu, J., Wang, T., Talbot, R., Mao, H., Yang, X., Fu, C., Sun, J., Zhuang, B., Li, S.,
1147	Han, Y., and Xie, M.: Characteristics of atmospheric mercury deposition and
1148	size-fractionated particulate mercury in urban Nanjing, China, Atmos. Chem.

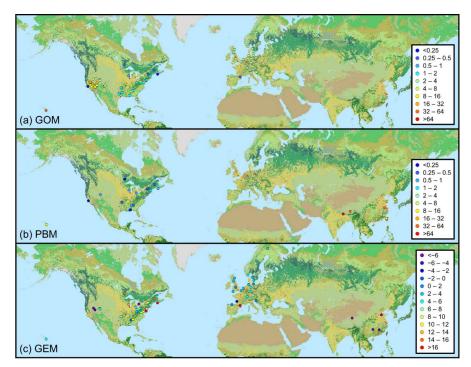
1149	Phys., 14, 2233–2244, 10.5194/acp-14-2233-2014, 2014.
1150	Zhu, W., Sommar, J., Lin, C. J., and Feng, X.: Mercury vapor air-surface exchange
1151	measured by collocated micrometeorological and enclosure methods - Part II:
1152	Bias and uncertainty analysis, Atmos. Chem. Phys., 15, 5359-5376,
1153	10.5194/acp-15-5359-2015, 2015a.
1154	Zhu, W., Sommar, J., Lin, C. J., and Feng, X.: Mercury vapor air-surface exchange
1155	measured by collocated micrometeorological and enclosure methods - Part I:
1156	Data comparability and method characteristics, Atmos. Chem. Phys., 15, 685-
1157	702, 10.5194/acp-15-685-2015, 2015b.
1158	Zhu, W., Lin, CJ., Wang, X., Sommar, J., Fu, X., and Feng, X.: Global observations
1159	and modeling of atmosphere-surface exchange of elemental mercury: A critical
1160	review, Atmos. Chem. Phys., 16, 4451-4480, 10.5194/acp-16-4451-2016, 2016.
1161	



1162 Figure Captions

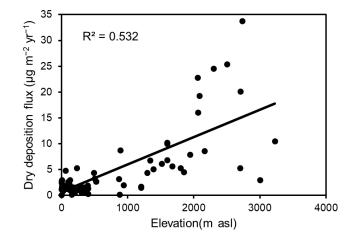
- **Figure 1.** Global distribution of the Hg wet deposition flux ($\mu g m^{-2} yr^{-1}$).
- 1164 Figure 2. Relationships between the annual precipitation and the Hg wet deposition
- 1165 flux for different regions worldwide.
- **Figure 3.** Global distribution of the (a) GOM, (b) PBM, and (c) GEM dry deposition
- 1167 fluxes ($\mu g m^{-2} yr^{-1}$).
- **Figure 4.** Relationship between the elevation and the GOM dry deposition flux.
- **Figure 5.** Comparison between the GOM dry deposition fluxes from direct
- 1170 observations and model simulations. The numbers in brackets stand for the numbers
- 1171 of samples.
- 1172 Figure 6. Total Hg wet deposition fluxes (blue columns with black bars as standard
- 1173 deviations) and precipitation levels (orange dots) for (a) different terrestrial surface
- 1174 types and (b) different forest types. The numbers in brackets stand for the numbers of
- 1175 samples. DB stands for deciduous broadleaf forests, DN stands for deciduous needle
- 1176 leaf forests, EB stands for evergreen broadleaf forests, and EN stands for evergreen
- 1177 needle leaf forests.
- 1178 Figure 7. Dry deposition fluxes of (a) GOM, (b) PBM and (c) GEM for different
- 1179 terrestrial surface types. The numbers in brackets stand for the numbers of samples.
- 1180 Figure 8. Litterfall Hg deposition fluxes (blue columns with black bars as standard
- 1181 deviations) and Hg concentrations in litterfall (orange dots) for different terrestrial
- 1182 surface types. The numbers in brackets stand for the numbers of samples. DB stands
- 1183 for deciduous broadleaf forests, DN stands for deciduous needle leaf forests, EB
- 1184 stands for evergreen broadleaf forests, and EN stands for evergreen needle leaf
- 1185 forests.



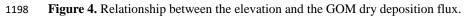

1190 Figure 2. Relationships between the annual precipitation and the Hg wet deposition

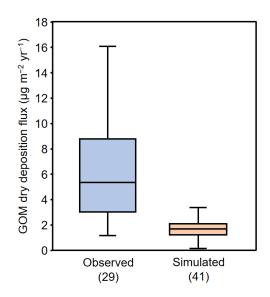
1191 flux for different regions worldwide.

1192

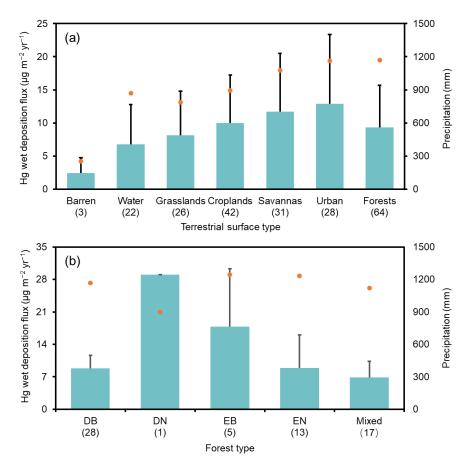

1193

1194 **Figure 3.** Global distribution of the (a) GOM, (b) PBM, and (c) GEM dry deposition


1195 fluxes ($\mu g m^{-2} yr^{-1}$).

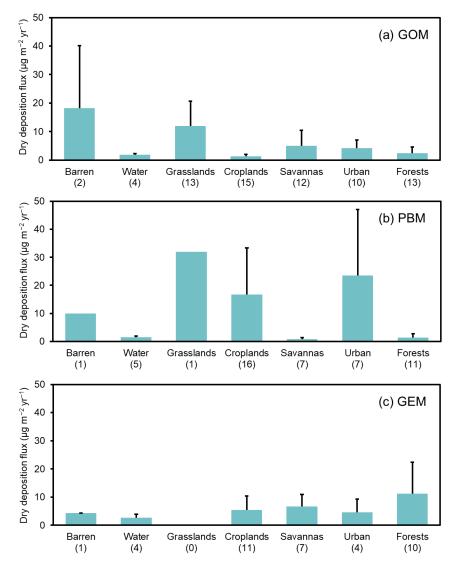


1197



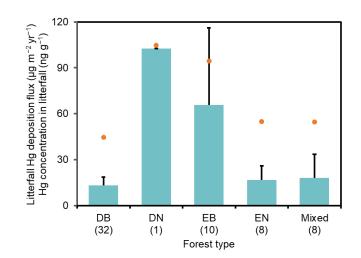
1200

- 1201 Figure 5. Comparison between the GOM dry deposition fluxes from direct
- 1202 observations and model simulations. The numbers in brackets stand for the numbers
- 1203 of samples.



1205

Figure 6. Total Hg wet deposition fluxes (blue columns with black bars as standard deviations) and precipitation levels (orange dots) for (a) different terrestrial surface
types and (b) different forest types. The numbers in brackets stand for the numbers of samples. DB stands for deciduous broadleaf forests, DN stands for deciduous needle
leaf forests, EB stands for evergreen broadleaf forests, and EN stands for evergreen needle leaf forests.


1214 Figure 7. Dry deposition fluxes of (a) GOM, (b) PBM and (c) GEM for different

1215 terrestrial surface types. The numbers in brackets stand for the numbers of samples.

1216

1217

1218 Figure 8. Litterfall Hg deposition fluxes (blue columns with black bars as standard

deviations) and Hg concentrations in litterfall (orange dots) for different terrestrial

1220 surface types. The numbers in brackets stand for the numbers of samples. DB stands

1221 for deciduous broadleaf forests, DN stands for deciduous needle leaf forests, EB

1222 stands for evergreen broadleaf forests, and EN stands for evergreen needle leaf

- 1223 forests.
- 1224